本文是基於TensorRT 5.0.2基礎上,關於其內部的network_api_pytorch_mnist例子的分析和介紹。
本例子直接基於pytorch進行訓練,而後直接導出權重值爲字典,此時並未dump該權重;接着基於tensorrt的network進行手動設計網絡結構並填充權重。本文核心在於介紹network api的使用html
假設當前路徑爲:python
TensorRT-5.0.2.6/samples
其對應當前例子文件目錄樹爲:api
# tree python python ├── common.py ├── network_api_pytorch_mnist │ ├── model.py │ ├── README.md │ ├── requirements.txt │ └── sample.py
其中只有2個文件:緩存
- model:該文件包含用於訓練Pytorch MNIST 模型的函數
- sample:該文件使用Pytorch生成的mnist模型去建立一個TensorRT inference engine
首先介紹下model.py網絡
首先下載對應的mnist數據,並放到對應緩存路徑下:app
''' i) 去http://yann.lecun.com/exdb/mnist/index.html 下載四個 ii) 放到/tmp/mnist/data/MNIST/raw/ ''' /tmp/mnist/data/MNIST/raw ├── t10k-images-idx3-ubyte.gz ├── t10k-labels-idx1-ubyte.gz ├── train-images-idx3-ubyte.gz └── train-labels-idx1-ubyte.gz
這樣加快model.py讀取mnist數據的速度dom
# 該文件包含用於訓練Pytorch MNIST模型的函數 import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.autograd import Variable import numpy as np import os from random import randint # Network結構,2層卷積+dropout+一層全鏈接+一層softmax class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 20, kernel_size=5) self.conv2 = nn.Conv2d(20, 50, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(800, 500) self.fc2 = nn.Linear(500, 10) def forward(self, x): x = F.max_pool2d(self.conv1(x), kernel_size=2, stride=2) x = F.max_pool2d(self.conv2(x), kernel_size=2, stride=2) x = x.view(-1, 800) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) class MnistModel(object): ''' 初始化''' def __init__(self): self.batch_size = 64 self.test_batch_size = 100 self.learning_rate = 0.01 self.sgd_momentum = 0.9 self.log_interval = 100 # Fetch MNIST data set. # 訓練時候的數據讀取 self.train_loader = torch.utils.data.DataLoader( datasets.MNIST('/tmp/mnist/data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=self.batch_size, shuffle=True) # 測試時候的數據讀取 self.test_loader = torch.utils.data.DataLoader( datasets.MNIST('/tmp/mnist/data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=self.test_batch_size, shuffle=True) # 網絡結構實例化 self.network = Net() ''' 訓練該網絡,而後每一個epoch以後進行驗證.''' def learn(self, num_epochs=5): # 每一個epoch的訓練過程 def train(epoch): self.network.train() # 開啓訓練flag optimizer = optim.SGD(self.network.parameters(), lr=self.learning_rate, momentum=self.sgd_momentum) for batch, (data, target) in enumerate(self.train_loader): data, target = Variable(data), Variable(target) optimizer.zero_grad() output = self.network(data) # 一次前向 loss = F.nll_loss(output, target) # 計算loss loss.backward() # 反向計算梯度 optimizer.step() if batch % self.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch * len(data), len(self.train_loader.dataset), 100. * batch / len(self.train_loader), loss.data.item())) # 測試該網絡 def test(epoch): self.network.eval() # 開啓驗證flag test_loss = 0 correct = 0 for data, target in self.test_loader: with torch.no_grad(): data, target = Variable(data), Variable(target) output = self.network(data) # 前向 test_loss += F.nll_loss(output, target).data.item() # 累加loss值 pred = output.data.max(1)[1] # 計算當次預測值 correct += pred.eq(target.data).cpu().sum() # 累加預測正確的 test_loss /= len(self.test_loader) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(self.test_loader.dataset), 100. * correct / len(self.test_loader.dataset))) # 調用上面定義好的訓練函數和測試函數 for e in range(num_epochs): train(e + 1) test(e + 1) ''' 可視化權重''' def get_weights(self): return self.network.state_dict() ''' 隨機獲取 測試樣本隊列中 樣本 ''' def get_random_testcase(self): data, target = next(iter(self.test_loader)) case_num = randint(0, len(data) - 1) test_case = data.numpy()[case_num].ravel().astype(np.float32) test_name = target.numpy()[case_num] return test_case, test_name
能夠看出,上面的代碼就是定義了網絡結構,和訓練網絡的函數方法。下面介紹下sample.pyasync
# 該例子用pytorch編寫的MNIST模型去生成一個TensorRT Inference Engine from PIL import Image import numpy as np import pycuda.driver as cuda import pycuda.autoinit import tensorrt as trt import sys, os sys.path.insert(1, os.path.join(sys.path[0], "..")) import model # import common # 這裏將common中的GiB和find_sample_data,do_inference等函數移動到該py文件中,保證自包含。 def GiB(val): '''以GB爲單位,計算所須要的存儲值,向左位移10bit表示KB,20bit表示MB ''' return val * 1 << 30 def find_sample_data(description="Runs a TensorRT Python sample", subfolder="", find_files=[]): '''該函數就是一個參數解析函數。 Parses sample arguments. Args: description (str): Description of the sample. subfolder (str): The subfolder containing data relevant to this sample find_files (str): A list of filenames to find. Each filename will be replaced with an absolute path. Returns: str: Path of data directory. Raises: FileNotFoundError ''' # 爲了簡潔,這裏直接將路徑硬編碼到代碼中。 data_root = kDEFAULT_DATA_ROOT = os.path.abspath("/TensorRT-5.0.2.6/python/data/") subfolder_path = os.path.join(data_root, subfolder) if not os.path.exists(subfolder_path): print("WARNING: " + subfolder_path + " does not exist. Using " + data_root + " instead.") data_path = subfolder_path if os.path.exists(subfolder_path) else data_root if not (os.path.exists(data_path)): raise FileNotFoundError(data_path + " does not exist.") for index, f in enumerate(find_files): find_files[index] = os.path.abspath(os.path.join(data_path, f)) if not os.path.exists(find_files[index]): raise FileNotFoundError(find_files[index] + " does not exist. ") if find_files: return data_path, find_files else: return data_path #----------------- TRT_LOGGER = trt.Logger(trt.Logger.WARNING) class ModelData(object): INPUT_NAME = "data" INPUT_SHAPE = (1, 28, 28) OUTPUT_NAME = "prob" OUTPUT_SIZE = 10 DTYPE = trt.float32 '''main中第三步:構建engine''' # 該函數構建的網絡結構和上面model.py中一致,只是這裏經過訓練後的網絡模型讀取對應的權重值,並填充到network中 # network是TensorRT提供的,weights是Pytorch訓練後的模型提供的 def populate_network(network, weights): '''network支持的方法來自https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html ''' # 基於提供的權重配置網絡層 input_tensor = network.add_input(name=ModelData.INPUT_NAME, dtype=ModelData.DTYPE, shape=ModelData.INPUT_SHAPE) conv1_w = weights['conv1.weight'].numpy() conv1_b = weights['conv1.bias'].numpy() conv1 = network.add_convolution(input=input_tensor, num_output_maps=20, kernel_shape=(5, 5), kernel=conv1_w, bias=conv1_b) conv1.stride = (1, 1) pool1 = network.add_pooling(input=conv1.get_output(0), type=trt.PoolingType.MAX, window_size=(2, 2)) pool1.stride = (2, 2) conv2_w = weights['conv2.weight'].numpy() conv2_b = weights['conv2.bias'].numpy() conv2 = network.add_convolution(pool1.get_output(0), 50, (5, 5), conv2_w, conv2_b) conv2.stride = (1, 1) pool2 = network.add_pooling(conv2.get_output(0), trt.PoolingType.MAX, (2, 2)) pool2.stride = (2, 2) fc1_w = weights['fc1.weight'].numpy() fc1_b = weights['fc1.bias'].numpy() fc1 = network.add_fully_connected(input=pool2.get_output(0), num_outputs=500, kernel=fc1_w, bias=fc1_b) relu1 = network.add_activation(input=fc1.get_output(0), type=trt.ActivationType.RELU) fc2_w = weights['fc2.weight'].numpy() fc2_b = weights['fc2.bias'].numpy() fc2 = network.add_fully_connected(relu1.get_output(0), ModelData.OUTPUT_SIZE, fc2_w, fc2_b) fc2.get_output(0).name = ModelData.OUTPUT_NAME network.mark_output(tensor=fc2.get_output(0)) '''main中第三步:構建engine''' def build_engine(weights): '''下面的create_network會返回一個tensorrt.tensorrt.INetworkDefinition對象 https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Core/Builder.html?highlight=create_network#tensorrt.Builder.create_network ''' with trt.Builder(TRT_LOGGER) as builder, \ builder.create_network() as network: builder.max_workspace_size = GiB(1) populate_network(network, weights) # 用以前的pytorch模型中的權重來填充network # 構建並返回一個engine. return builder.build_cuda_engine(network) '''main中第四步:分配buffer ''' def allocate_buffers(engine): inputs = [] outputs = [] bindings = [] stream = cuda.Stream() for binding in engine: size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size dtype = trt.nptype(engine.get_binding_dtype(binding)) # 分配host和device端的buffer host_mem = cuda.pagelocked_empty(size, dtype) device_mem = cuda.mem_alloc(host_mem.nbytes) # 將device端的buffer追加到device的bindings. bindings.append(int(device_mem)) # Append to the appropriate list. if engine.binding_is_input(binding): inputs.append(HostDeviceMem(host_mem, device_mem)) else: outputs.append(HostDeviceMem(host_mem, device_mem)) return inputs, outputs, bindings, stream '''main中第五步:選擇測試樣本 ''' # 用pytorch的DataLoader隨機選擇一個測試樣本 def load_random_test_case(model, pagelocked_buffer): img, expected_output = model.get_random_testcase() # 將圖片copy到host端的pagelocked buffer np.copyto(pagelocked_buffer, img) return expected_output '''main中第六步:執行inference ''' # 該函數能夠適應多個輸入/輸出;輸入和輸出格式爲HostDeviceMem對象組成的列表 def do_inference(context, bindings, inputs, outputs, stream, batch_size=1): # 將數據移動到GPU [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs] # 執行inference. context.execute_async(batch_size=batch_size, bindings=bindings, stream_handle=stream.handle) # 將結果從 GPU寫回到host端 [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs] # 同步stream stream.synchronize() # 返回host端的輸出結果 return [out.host for out in outputs] def main(): ''' 1 - 尋找模型文件,不過次例中未用到該返回值''' data_path = find_sample_data(description="Runs an MNIST network using a PyTorch model", subfolder="mnist") ''' 2 - 訓練該模型''' mnist_model = model.MnistModel() mnist_model.learn() # 獲取訓練好的權重 weights = mnist_model.get_weights() ''' 3 - 基於build_engine構建engine;用tensorrt來進行inference ''' with build_engine(weights) as engine: ''' 4 - 構建engine, 分配buffers, 建立一個流 ''' inputs, outputs, bindings, stream = allocate_buffers(engine) with engine.create_execution_context() as context: ''' 5 - 讀取測試樣本,並歸一化''' case_num = load_random_test_case(mnist_model, pagelocked_buffer=inputs[0].host) ''' 6 -執行inference,do_inference函數會返回一個list類型,此處只有一個元素 ''' [output] = do_inference(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream) pred = np.argmax(output) print("Test Case: " + str(case_num)) print("Prediction: " + str(pred)) if __name__ == '__main__': main()
運行結果以下:
ide