##最大連續子數組和(簡單一維dp) ###1、題目: ####給定n個整數(可能爲負數)組成的序列a[1],a[2],a[3],…,a[n],求該序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。當所給的整數均爲負數時定義子段和爲0,依此定義,所求的最優值爲: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n ####例如,當(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)時,最大子段和爲20。 ####-- 引用自《百度百科》 ###2、分析 ####經典的簡單一維dp題目,設另外一數組b,b[i]表示以a[i]爲結尾的最大和。最大連續子數和sum值爲b數組中最大值。又因判斷a[i]時,前i-1個數無用,可將b結合進a數組達到空間最優。整理以下: ####$$a[i]=max(a[i],a[i]+a[i-1])$$ ####$$sum=max(a[1],a[2]...,a[n])$$ ###3、代碼 ####我用myeclipse編輯java程序,代碼以下:java
public class Main { public static int mainsum(int[] a,int n){ int sum = 0; if(a[0] > 0) sum = a[0]; for(int i = 1; i < n; i++){ a[i] = Math.max( a[i], a[i] + a[i-1]); if(sum < a[i]) sum = a[i]; } return sum; } }
###4、覆蓋測試 ####我選用條件組合覆蓋,根據程序繪製流程圖以下: git
####由於每一個斷定均爲單條件斷定,當考慮i時,將會有$(2×2)^n$種可能,因此沒法考慮i值。那麼,只需2×2種狀況便可條件組合覆蓋。四種狀況,一種特殊狀況,測試樣例及結果以下: | 狀況 | 用例 | 結果 | | -------- | ----- | :----: | | a[i]<=a[i]+a[i-1]&&sum<=a[i] | 1,2,3,4,5,6| 21 | | a[i]>a[i]+a[i-1]&&sum>a[i] | 1,-2,-3,-4,-5,-6 | 1 | | a[i]>a[i]+a[i-1]&&sum<=a[i] | 1,-2,3,-4,5,-6 | 5 | | a[i]<=a[i]+a[i-1]&&sum>a[i] | 10,-17,5,4,-7,6 | 10 | | 特殊狀況(所有小於0) | -1,-2,-3,-4,-5,-6 | 0 | ####測試代碼以下:數組
public class MainTest { @Test public void testMainsum1() { int[] a = new int[]{1,2,3,4,5,6}; int sum = new Main().mainsum(a , 6); assertEquals(21 , sum ); } @Test public void testMainsum2() { int[] a = new int[]{1,-2,-3,-4,-5,-6}; int sum = new Main().mainsum(a , 6); assertEquals(1 , sum ); } @Test public void testMainsum3() { int[] a = new int[]{1,-2,3,-4,5,-6}; int sum = new Main().mainsum(a , 6); assertEquals(5 , sum ); } @Test public void testMainsum4() { int[] a = new int[]{10,-17,5,4,-7,6}; int sum = new Main().mainsum(a , 6); assertEquals(10 , sum ); } @Test public void testMainsum5() { int[] a = new int[]{-1,-2,-3,-4,-5,-6}; int sum = new Main().mainsum(a , 6); assertEquals(0 , sum ); } }
####測試結果以下: eclipse
###所有代碼:代碼地址測試