【OCR技術系列之八】端到端不定長文本識別CRNN代碼實現

CRNN是OCR領域很是經典且被普遍使用的識別算法,其理論基礎能夠參考我上一篇文章,本文將着重講解CRNN代碼實現過程以及識別效果。html

數據處理

利用圖像處理技術咱們手工大批量生成文字圖像,一共360萬張圖像樣本,效果以下:python

咱們劃分了訓練集和測試集(10:1),並單獨存儲爲兩個文本文件:git

文本文件裏的標籤格式以下:github

咱們獲取到的是最原始的數據集,在圖像深度學習訓練中咱們通常都會把原始數據集轉化爲lmdb格式以方便後續的網絡訓練。所以咱們也須要對該數據集進行lmdb格式轉化。下面代碼就是用於lmdb格式轉化,思路比較簡單,就是首先讀入圖像和對應的文本標籤,先使用字典將該組合存儲起來(cache),再利用lmdb包的put函數把字典(cache)存儲的k,v寫成lmdb格式存儲好(cache當有了1000個元素就put一次)。算法

import lmdb
import cv2
import numpy as np
import os


def checkImageIsValid(imageBin):
    if imageBin is None:
        return False
    try:
        imageBuf = np.fromstring(imageBin, dtype=np.uint8)
        img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE)
        imgH, imgW = img.shape[0], img.shape[1]
    except:
        return False
    else:
        if imgH * imgW == 0:
            return False
    return True


def writeCache(env, cache):
    with env.begin(write=True) as txn:
        for k, v in cache.items():
            txn.put(k, v)


def createDataset(outputPath, imagePathList, labelList, lexiconList=None, checkValid=True):
    """
    Create LMDB dataset for CRNN training.
    ARGS:
        outputPath    : LMDB output path
        imagePathList : list of image path
        labelList     : list of corresponding groundtruth texts
        lexiconList   : (optional) list of lexicon lists
        checkValid    : if true, check the validity of every image
    """
    assert (len(imagePathList) == len(labelList))
    nSamples = len(imagePathList)
    env = lmdb.open(outputPath, map_size=1099511627776)
    cache = {}
    cnt = 1
    for i in range(nSamples):
        imagePath = ''.join(imagePathList[i]).split()[0].replace('\n', '').replace('\r\n', '')
        # print(imagePath)
        label = ''.join(labelList[i])
        print(label)
        # if not os.path.exists(imagePath):
        #     print('%s does not exist' % imagePath)
        #     continue

        with open('.' + imagePath, 'r') as f:
            imageBin = f.read()

        if checkValid:
            if not checkImageIsValid(imageBin):
                print('%s is not a valid image' % imagePath)
                continue
        imageKey = 'image-%09d' % cnt
        labelKey = 'label-%09d' % cnt
        cache[imageKey] = imageBin
        cache[labelKey] = label
        if lexiconList:
            lexiconKey = 'lexicon-%09d' % cnt
            cache[lexiconKey] = ' '.join(lexiconList[i])
        if cnt % 1000 == 0:
            writeCache(env, cache)
            cache = {}
            print('Written %d / %d' % (cnt, nSamples))
        cnt += 1
        print(cnt)
    nSamples = cnt - 1
    cache['num-samples'] = str(nSamples)
    writeCache(env, cache)
    print('Created dataset with %d samples' % nSamples)


OUT_PATH = '../crnn_train_lmdb'
IN_PATH = './train.txt'

if __name__ == '__main__':
    outputPath = OUT_PATH
    if not os.path.exists(OUT_PATH):
        os.mkdir(OUT_PATH)
    imgdata = open(IN_PATH)
    imagePathList = list(imgdata)

    labelList = []
    for line in imagePathList:
        word = line.split()[1]
        labelList.append(word)
    createDataset(outputPath, imagePathList, labelList)

咱們運行上面的代碼,能夠獲得訓練集和測試集的lmdb網絡

在數據準備部分還有一個操做須要強調的,那就是文字標籤數字化,即咱們用數字來表示每個文字(漢字,英文字母,標點符號)。好比「我」字對應的id是1,「l」對應的id是1000,「?」對應的id是90,如此類推,這種編解碼工做使用字典數據結構存儲便可,訓練時先把標籤編碼(encode),預測時就將網絡輸出結果解碼(decode)成文字輸出。數據結構

class strLabelConverter(object):
    """Convert between str and label.

    NOTE:
        Insert `blank` to the alphabet for CTC.

    Args:
        alphabet (str): set of the possible characters.
        ignore_case (bool, default=True): whether or not to ignore all of the case.
    """

    def __init__(self, alphabet, ignore_case=False):
        self._ignore_case = ignore_case
        if self._ignore_case:
            alphabet = alphabet.lower()
        self.alphabet = alphabet + '-'  # for `-1` index

        self.dict = {}
        for i, char in enumerate(alphabet):
            # NOTE: 0 is reserved for 'blank' required by wrap_ctc
            self.dict[char] = i + 1

    def encode(self, text):
        """Support batch or single str.

        Args:
            text (str or list of str): texts to convert.

        Returns:
            torch.IntTensor [length_0 + length_1 + ... length_{n - 1}]: encoded texts.
            torch.IntTensor [n]: length of each text.
        """

        length = []
        result = []
        for item in text:
            item = item.decode('utf-8', 'strict')

            length.append(len(item))
            for char in item:

                index = self.dict[char]
                result.append(index)

        text = result
        # print(text,length)
        return (torch.IntTensor(text), torch.IntTensor(length))

    def decode(self, t, length, raw=False):
        """Decode encoded texts back into strs.

        Args:
            torch.IntTensor [length_0 + length_1 + ... length_{n - 1}]: encoded texts.
            torch.IntTensor [n]: length of each text.

        Raises:
            AssertionError: when the texts and its length does not match.

        Returns:
            text (str or list of str): texts to convert.
        """
        if length.numel() == 1:
            length = length[0]
            assert t.numel() == length, "text with length: {} does not match declared length: {}".format(t.numel(),
                                                                                                         length)
            if raw:
                return ''.join([self.alphabet[i - 1] for i in t])
            else:
                char_list = []
                for i in range(length):
                    if t[i] != 0 and (not (i > 0 and t[i - 1] == t[i])):
                        char_list.append(self.alphabet[t[i] - 1])
                return ''.join(char_list)
        else:
            # batch mode
            assert t.numel() == length.sum(), "texts with length: {} does not match declared length: {}".format(
                t.numel(), length.sum())
            texts = []
            index = 0
            for i in range(length.numel()):
                l = length[i]
                texts.append(
                    self.decode(
                        t[index:index + l], torch.IntTensor([l]), raw=raw))
                index += l
            return texts

網絡設計

根據CRNN的論文描述,CRNN是由CNN-》RNN-》CTC三大部分架構而成,分別對應卷積層、循環層和轉錄層。首先CNN部分用於底層的特徵提取,RNN採起了BiLSTM,用於學習關聯序列信息並預測標籤分佈,CTC用於序列對齊,輸出預測結果。架構

爲了將特徵輸入到Recurrent Layers,作以下處理:app

  • 首先會將圖像縮放到 32×W×3 大小
  • 而後通過CNN後變爲 1×(W/4)× 512
  • 接着針對LSTM,設置 T=(W/4) , D=512 ,便可將特徵輸入LSTM。

以上是理想訓練時的操做,可是CRNN論文提到的網絡輸入是歸一化好的100×32大小的灰度圖像,即高度統一爲32個像素。下面是CRNN的深度神經網絡結構圖,CNN採起了經典的VGG16,值得注意的是,在VGG16的第3第4個max pooling層CRNN採起的是1×2的矩形池化窗口(w×h),這有別於經典的VGG16的2×2的正方形池化窗口,這個改動是由於文本圖像多數都是高較小而寬較長,因此其feature map也是這種高小寬長的矩形形狀,若是使用1×2的池化窗口則更適合英文字母識別(好比區分i和l)。VGG16部分還引入了BatchNormalization模塊,旨在加速模型收斂。還有值得注意一點,CRNN的輸入是灰度圖像,即圖像深度爲1。CNN部分的輸出是512x1x16(c×h×w)的特徵向量。ide

接下來分析RNN層。RNN部分使用了雙向LSTM,隱藏層單元數爲256,CRNN採用了兩層BiLSTM來組成這個RNN層,RNN層的輸出維度將是(s,b,class_num) ,其中class_num爲文字類別總數。

值得注意的是:Pytorch裏的LSTM單元接受的輸入都必須是3維的張量(Tensors).每一維表明的意思不能弄錯。第一維體現的是序列(sequence)結構,第二維度體現的是小塊(mini-batch)結構,第三位體現的是輸入的元素(elements of input)。若是在應用中不適用小塊結構,那麼能夠將輸入的張量中該維度設爲1,但必需要體現出這個維度。

LSTM的輸入

input of shape (seq_len, batch, input_size): tensor containing the features of the input sequence. 
The input can also be a packed variable length sequence.
input shape(a,b,c)
a:seq_len  -> 序列長度
b:batch
c:input_size   輸入特徵數目

根據LSTM的輸入要求,咱們要對CNN的輸出作些調整,即把CNN層的輸出調整爲[seq_len, batch, input_size]形式,下面爲具體操做:先使用squeeze函數移除h維度,再使用permute函數調整各維順序,即從原來[w, b, c]的調整爲[seq_len, batch, input_size],具體尺寸爲[16,batch,512],調整好以後便可以將該矩陣送入RNN層。

x = self.cnn(x)
b, c, h, w = x.size()
# print(x.size()): b,c,h,w
assert h == 1   # "the height of conv must be 1"
x = x.squeeze(2)  # remove h dimension, b *512 * width
x = x.permute(2, 0, 1)  # [w, b, c] = [seq_len, batch, input_size]
x = self.rnn(x)

RNN層輸出格式以下,由於咱們採用的是雙向BiLSTM,因此輸出維度將是hidden_unit * 2

Outputs: output, (h_n, c_n)
output of shape (seq_len, batch, num_directions * hidden_size)
h_n of shape (num_layers * num_directions, batch, hidden_size)
c_n (num_layers * num_directions, batch, hidden_size)

而後咱們再經過線性變換操做self.embedding1 = torch.nn.Linear(hidden_unit * 2, 512)是的輸出維度再次變爲512,繼續送入第二個LSTM層。第二個LSTM層後繼續接線性操做torch.nn.Linear(hidden_unit * 2, class_num)使得整個RNN層的輸出爲文字類別總數。

import torch
import torch.nn.functional as F


class Vgg_16(torch.nn.Module):

    def __init__(self):
        super(Vgg_16, self).__init__()
        self.convolution1 = torch.nn.Conv2d(1, 64, 3, padding=1)
        self.pooling1 = torch.nn.MaxPool2d(2, stride=2)
        self.convolution2 = torch.nn.Conv2d(64, 128, 3, padding=1)
        self.pooling2 = torch.nn.MaxPool2d(2, stride=2)
        self.convolution3 = torch.nn.Conv2d(128, 256, 3, padding=1)
        self.convolution4 = torch.nn.Conv2d(256, 256, 3, padding=1)
        self.pooling3 = torch.nn.MaxPool2d((1, 2), stride=(2, 1)) # notice stride of the non-square pooling
        self.convolution5 = torch.nn.Conv2d(256, 512, 3, padding=1)
        self.BatchNorm1 = torch.nn.BatchNorm2d(512)
        self.convolution6 = torch.nn.Conv2d(512, 512, 3, padding=1)
        self.BatchNorm2 = torch.nn.BatchNorm2d(512)
        self.pooling4 = torch.nn.MaxPool2d((1, 2), stride=(2, 1))
        self.convolution7 = torch.nn.Conv2d(512, 512, 2)

    def forward(self, x):
        x = F.relu(self.convolution1(x), inplace=True)
        x = self.pooling1(x)
        x = F.relu(self.convolution2(x), inplace=True)
        x = self.pooling2(x)
        x = F.relu(self.convolution3(x), inplace=True)
        x = F.relu(self.convolution4(x), inplace=True)
        x = self.pooling3(x)
        x = self.convolution5(x)
        x = F.relu(self.BatchNorm1(x), inplace=True)
        x = self.convolution6(x)
        x = F.relu(self.BatchNorm2(x), inplace=True)
        x = self.pooling4(x)
        x = F.relu(self.convolution7(x), inplace=True)
        return x  # b*512x1x16


class RNN(torch.nn.Module):
    def __init__(self, class_num, hidden_unit):
        super(RNN, self).__init__()
        self.Bidirectional_LSTM1 = torch.nn.LSTM(512, hidden_unit, bidirectional=True)
        self.embedding1 = torch.nn.Linear(hidden_unit * 2, 512)
        self.Bidirectional_LSTM2 = torch.nn.LSTM(512, hidden_unit, bidirectional=True)
        self.embedding2 = torch.nn.Linear(hidden_unit * 2, class_num)

    def forward(self, x):
        x = self.Bidirectional_LSTM1(x)   # LSTM output: output, (h_n, c_n)
        T, b, h = x[0].size()   # x[0]: (seq_len, batch, num_directions * hidden_size)
        x = self.embedding1(x[0].view(T * b, h))  # pytorch view() reshape as [T * b, nOut]
        x = x.view(T, b, -1)  # [16, b, 512]
        x = self.Bidirectional_LSTM2(x)
        T, b, h = x[0].size()
        x = self.embedding2(x[0].view(T * b, h))
        x = x.view(T, b, -1)
        return x  # [16,b,class_num]


# output: [s,b,class_num]
class CRNN(torch.nn.Module):
    def __init__(self, class_num, hidden_unit=256):
        super(CRNN, self).__init__()
        self.cnn = torch.nn.Sequential()
        self.cnn.add_module('vgg_16', Vgg_16())
        self.rnn = torch.nn.Sequential()
        self.rnn.add_module('rnn', RNN(class_num, hidden_unit))

    def forward(self, x):
        x = self.cnn(x)
        b, c, h, w = x.size()
        # print(x.size()): b,c,h,w
        assert h == 1   # "the height of conv must be 1"
        x = x.squeeze(2)  # remove h dimension, b *512 * width
        x = x.permute(2, 0, 1)  # [w, b, c] = [seq_len, batch, input_size]
        # x = x.transpose(0, 2)
        # x = x.transpose(1, 2)
        x = self.rnn(x)
        return x

損失函數設計

剛剛完成了CNN層和RNN層的設計,如今開始設計轉錄層,即將RNN層輸出的結果翻譯成最終的識別文字結果,從而實現不定長的文字識別。pytorch沒有內置的CTC loss,因此只能去Github下載別人實現的CTC loss來完成損失函數部分的設計。安裝CTC-loss的方式以下:

git clone https://github.com/SeanNaren/warp-ctc.git
cd warp-ctc
mkdir build; cd build
cmake ..
make
cd ../pytorch_binding/
python setup.py install
cd ../build
cp libwarpctc.so ../../usr/lib

待安裝完畢後,咱們能夠直接調用CTC loss了,以一個小例子來講明ctc loss的用法。

import torch
from warpctc_pytorch import CTCLoss
ctc_loss = CTCLoss()
# expected shape of seqLength x batchSize x alphabet_size
probs = torch.FloatTensor([[[0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1, 0.6, 0.1, 0.1]]]).transpose(0, 1).contiguous()
labels = torch.IntTensor([1, 2])
label_sizes = torch.IntTensor([2])
probs_sizes = torch.IntTensor([2])
probs.requires_grad_(True)  # tells autograd to compute gradients for probs
cost = ctc_loss(probs, labels, probs_sizes, label_sizes)
cost.backward()
CTCLoss(size_average=False, length_average=False)
    # size_average (bool): normalize the loss by the batch size (default: False)
    # length_average (bool): normalize the loss by the total number of frames in the batch. If True, supersedes size_average (default: False)

forward(acts, labels, act_lens, label_lens)
    # acts: Tensor of (seqLength x batch x outputDim) containing output activations from network (before softmax)
    # labels: 1 dimensional Tensor containing all the targets of the batch in one large sequence
    # act_lens: Tensor of size (batch) containing size of each output sequence from the network
    # label_lens: Tensor of (batch) containing label length of each example

從上面的代碼能夠看出,CTCLoss的輸入爲[probs, labels, probs_sizes, label_sizes],即預測結果、標籤、預測結果的數目和標籤數目。那麼咱們仿照這個例子開始設計CRNN的CTC LOSS。

preds = net(image)
preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))  # preds.size(0)=w=16
cost = criterion(preds, text, preds_size, length) / batch_size   # 這裏的length就是包含每一個文本標籤的長度的list,除以batch_size來求平均loss
cost.backward()

網絡訓練設計

接下來咱們須要完善具體的訓練流程,咱們還寫了個trainBatch函數用於bacth形式的梯度更新。

def trainBatch(net, criterion, optimizer, train_iter):
    data = train_iter.next()
    cpu_images, cpu_texts = data
    batch_size = cpu_images.size(0)
    lib.dataset.loadData(image, cpu_images)
    t, l = converter.encode(cpu_texts)
    lib.dataset.loadData(text, t)
    lib.dataset.loadData(length, l)

    preds = net(image)
    #print("preds.size=%s" % preds.size)
    preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))  # preds.size(0)=w=22
    cost = criterion(preds, text, preds_size, length) / batch_size  # length= a list that contains the len of text label in a batch
    net.zero_grad()
    cost.backward()
    optimizer.step()
    return cost

整個網絡訓練的流程以下:CTC-LOSS對象->CRNN網絡對象->image,text,len的tensor初始化->優化器初始化,而後開始循環每一個epoch,指定迭代次數就進行模型驗證和模型保存。CRNN論文提到所採用的優化器是Adadelta,可是通過我實驗看來,Adadelta的收斂速度很是慢,因此改用了RMSprop優化器,模型收斂速度大幅度提高。

criterion = CTCLoss()

    net = Net.CRNN(n_class)
    print(net)

    net.apply(lib.utility.weights_init)

    image = torch.FloatTensor(Config.batch_size, 3, Config.img_height, Config.img_width)
    text = torch.IntTensor(Config.batch_size * 5)
    length = torch.IntTensor(Config.batch_size)

    if cuda:
        net.cuda()
        image = image.cuda()
        criterion = criterion.cuda()

    image = Variable(image)
    text = Variable(text)
    length = Variable(length)

    loss_avg = lib.utility.averager()

    optimizer = optim.RMSprop(net.parameters(), lr=Config.lr)
    #optimizer = optim.Adadelta(net.parameters(), lr=Config.lr)
    #optimizer = optim.Adam(net.parameters(), lr=Config.lr,
                           #betas=(Config.beta1, 0.999))

    for epoch in range(Config.epoch):
        train_iter = iter(train_loader)
        i = 0
        while i < len(train_loader):
            for p in net.parameters():
                p.requires_grad = True
            net.train()

            cost = trainBatch(net, criterion, optimizer, train_iter)
            loss_avg.add(cost)
            i += 1

            if i % Config.display_interval == 0:
                print('[%d/%d][%d/%d] Loss: %f' %
                      (epoch, Config.epoch, i, len(train_loader), loss_avg.val()))
                loss_avg.reset()

            if i % Config.test_interval == 0:
                val(net, test_dataset, criterion)

            # do checkpointing
            if i % Config.save_interval == 0:
                torch.save(
                    net.state_dict(), '{0}/netCRNN_{1}_{2}.pth'.format(Config.model_dir, epoch, i))

訓練過程與測試設計

下面這幅圖表示的就是CRNN訓練過程,文字類別數爲6732,一共訓練20個epoch,batch_Szie設置爲64,因此一共是51244次迭代/epoch。

在迭代4個epoch時,loss降到0.1左右,acc上升到0.98。

接下來咱們設計推斷預測部分的代碼,首先需初始化CRNN網絡,載入訓練好的模型,讀入待預測的圖像並resize爲高爲32的灰度圖像,接着講該圖像送入網絡,最後再將網絡輸出解碼成文字便可輸出。

import time
import torch
import os
from torch.autograd import Variable
import lib.convert
import lib.dataset
from PIL import Image
import Net.net as Net
import alphabets
import sys
import Config

os.environ['CUDA_VISIBLE_DEVICES'] = "4"

crnn_model_path = './bs64_model/netCRNN_9_48000.pth'
IMG_ROOT = './test_images'
running_mode = 'gpu'
alphabet = alphabets.alphabet
nclass = len(alphabet) + 1


def crnn_recognition(cropped_image, model):
    converter = lib.convert.strLabelConverter(alphabet)  # 標籤轉換

    image = cropped_image.convert('L')  # 圖像灰度化

    ### Testing images are scaled to have height 32. Widths are
    # proportionally scaled with heights, but at least 100 pixels
    w = int(image.size[0] / (280 * 1.0 / Config.infer_img_w))
    #scale = image.size[1] * 1.0 / Config.img_height
    #w = int(image.size[0] / scale)

    transformer = lib.dataset.resizeNormalize((w, Config.img_height))
    image = transformer(image)
    if torch.cuda.is_available():
        image = image.cuda()
    image = image.view(1, *image.size())
    image = Variable(image)

    model.eval()
    preds = model(image)

    _, preds = preds.max(2)
    preds = preds.transpose(1, 0).contiguous().view(-1)

    preds_size = Variable(torch.IntTensor([preds.size(0)]))
    sim_pred = converter.decode(preds.data, preds_size.data, raw=False)  # 預測輸出解碼成文字
    print('results: {0}'.format(sim_pred))


if __name__ == '__main__':

    # crnn network
    model = Net.CRNN(nclass)
    
    # 載入訓練好的模型,CPU和GPU的載入方式不同,需分開處理
    if running_mode == 'gpu' and torch.cuda.is_available():
        model = model.cuda()
        model.load_state_dict(torch.load(crnn_model_path))
    else:
        model.load_state_dict(torch.load(crnn_model_path, map_location='cpu'))

    print('loading pretrained model from {0}'.format(crnn_model_path))

    files = sorted(os.listdir(IMG_ROOT))  # 按文件名排序
    for file in files:
        started = time.time()
        full_path = os.path.join(IMG_ROOT, file)
        print("=============================================")
        print("ocr image is %s" % full_path)
        image = Image.open(full_path)

        crnn_recognition(image, model)
        finished = time.time()
        print('elapsed time: {0}'.format(finished - started))

識別效果和總結

首先我從測試集中抽取幾張圖像送入模型識別,識別所有正確。

我也隨機在一些文檔圖片、掃描圖像上截取了一段文字圖像送入咱們該模型進行識別,識別效果也挺好的,基本識別正確,代表模型泛化能力很強。

我還截取了增值稅掃描發票上的文本圖像來看看咱們的模型可否還能夠表現出穩定的識別效果:

這裏作個小小的總結:對於端到端不定長的文字識別,CRNN是最爲經典的識別算法,並且實戰看來效果很是不錯。上面識別結果能夠看出,雖然咱們用於訓練的數據集是本身生成的,可是咱們該模型對於pdf文檔、掃描圖像等都有很不錯的識別結果,若是須要繼續提高對特定領域的文本圖像的識別,直接大量加入該類圖像用於訓練便可。CRNN的完整代碼能夠參考個人Github

相關文章
相關標籤/搜索