1、概述android
關於RILD的功能,就很少說了,對上服務於Phone進程,也能夠認爲是RILJ層,向下同modem層進行通訊,對MTK平臺來講就是使用AT命令了。架構
2、RILD的架構app
RILD主要由三部分組成,一個是rild.c,第二個是libril這個庫(對於MTK來講就是librilmtk),第三個是廠商關於實現同modem進行通訊的reference-ril庫,對於MTK來講就是mtk-ril。出於保護第三方廠商利益的考慮,這個庫是在rild運行的時候動態加載進去的,因爲運行在同一個進程中,因此rild同reference-ril之間的通訊是函數調用,因此二者之間定義了用於通訊的包含函數指針的結構體。socket
typedef struct { int version; /* set to RIL_VERSION */ RIL_RequestFunc onRequest; RIL_RadioStateRequest onStateRequest; RIL_Supports supports; RIL_Cancel onCancel; RIL_GetVersion getVersion; RIL_ReportUsbDisconn reportUsbDisconn; RIL_ReportSocketConn reportRILDConn; } RIL_RadioFunctions;
static struct RIL_Env s_rilEnv = { RIL_onRequestComplete, RIL_onUnsolicitedResponse, RIL_requestTimedCallback // For multi channel support ,RIL_requestProxyTimedCallback ,RIL_queryMyChannelId ,RIL_queryMyProxyIdByThread };
首先介紹下如何RILJ層下來的請求消息是如何調用到第三方庫的,流程以下,對於回調很明顯第三方庫提供具體實現,而libril提供函數指針,這有點相似於面向對象的多態。函數
rild.coop
RIL_register(funcs);//funnc 指向具體的實現,經過註冊使得libril中的指針指向實現
ril.cpp學習
RIL_register (const RIL_RadioFunctions *callbacks) { ... memcpy(&s_callbacks, callbacks, sizeof (RIL_RadioFunctions));//將callbacks賦值給全局變量s_callbacks
#define CALL_ONREQUEST(a, b, c, d, e) s_callbacks.onRequest((a), (b), (c), (d), (e)) #define CALL_ONSTATEREQUEST(a) s_callbacks.onStateRequest(a)
static void dispatchSIM_IO (Parcel &p, RequestInfo *pRI) { union RIL_SIM_IO { RIL_SIM_IO_v6 v6; RIL_SIM_IO_v5 v5; } simIO; int32_t t; int size; status_t status; #if VDBG RLOGD("dispatchSIM_IO"); #endif memset (&simIO, 0, sizeof(simIO)); // note we only check status at the end status = p.readInt32(&t); simIO.v6.command = (int)t; status = p.readInt32(&t); simIO.v6.fileid = (int)t; simIO.v6.path = strdupReadString(p); status = p.readInt32(&t); simIO.v6.p1 = (int)t; status = p.readInt32(&t); simIO.v6.p2 = (int)t; status = p.readInt32(&t); simIO.v6.p3 = (int)t; simIO.v6.data = strdupReadString(p); simIO.v6.pin2 = strdupReadString(p); simIO.v6.aidPtr = strdupReadString(p); startRequest; appendPrintBuf("%scmd=0x%X,efid=0x%X,path=%s,%d,%d,%d,%s,pin2=%s,aid=%s", printBuf, simIO.v6.command, simIO.v6.fileid, (char*)simIO.v6.path, simIO.v6.p1, simIO.v6.p2, simIO.v6.p3, (char*)simIO.v6.data, (char*)simIO.v6.pin2, simIO.v6.aidPtr); closeRequest; printRequest(pRI->token, pRI->pCI->requestNumber); if (status != NO_ERROR) { goto invalid; } size = (s_callbacks.version < 6) ? sizeof(simIO.v5) : sizeof(simIO.v6); CALL_ONREQUEST(pRI->pCI->requestNumber, &simIO, size, pRI, pRI->socket_id);//關於sim卡相關的上層消息分配
3、關於RILD的啓動ui
n以前的平臺就不說了,網上一搜一大堆,都是在init.rc中啓動的,可是Android N以後因爲init.rc啓動腳本的改動不少deamon程序一下找不到了,如下都是基於mtk 6737n平臺的源碼爲基準的spa
尋找n平臺rild啓動入口.net
init.rc中有一行
import /init.${ro.hardware}.rc
查看屬性值:
[ro.hardware]: [mt6735]
/device/mediatek/mt6735/init.mt6735.rc
其中有一行:
import init.modem.rc
在下面這個rc文件中找到了rild的啓動入口
/device/mediatek/mt6735/init.modem.rc
/device/mediatek/common/init.rilproxy.rc
4、RILD的初始化過程
只說最關鍵的部分,具體怎麼銜接起來的,本身閱讀代碼,由於每一個廠家仍是不同的
dlHandle = dlopen(rilLibPath, RTLD_NOW);//根據路徑打開第三方庫 if (dlHandle == NULL) { RLOGE("dlopen failed: %s", dlerror()); exit(EXIT_FAILURE); } RIL_startEventLoop();//最重要的就是啓動子線程循環監聽ril_event
ret = pipe(filedes); if (ret < 0) { RLOGE("Error in pipe() errno:%d", errno); return NULL; } s_fdWakeupRead = filedes[0]; s_fdWakeupWrite = filedes[1]; fcntl(s_fdWakeupRead, F_SETFL, O_NONBLOCK); ril_event_set (&s_wakeupfd_event, s_fdWakeupRead, true, processWakeupCallback, NULL); rilEventAddWakeup (&s_wakeupfd_event); // Only returns on error ril_event_loop(); RLOGE ("error in event_loop_base errno:%d", errno); // kill self to restart on error
看到eventLoop這個函數中這些封裝的函數主要是來自於Ril_event.cpp,因此搞清這個循環的關鍵是看懂這個類的原理,其實就是個事件鏈表,監聽到發生的event消息,對應調用這個結構體中的回調函數
struct ril_event { struct ril_event *next; struct ril_event *prev; int fd; int index; bool persist; struct timeval timeout; ril_event_cb func; void *param; };
添加事件
// Add event to watch list void ril_event_add(struct ril_event * ev) { dlog("~~~~ +ril_event_add ~~~~"); MUTEX_ACQUIRE(); for (int i = 0; i < MAX_FD_EVENTS; i++) { if (watch_table[i] == NULL) { watch_table[i] = ev;//ril_event結構全局鏈表 ev->index = i; dlog("~~~~ added at %d ~~~~", i); dump_event(ev); FD_SET(ev->fd, &readFds);//將ril_event結構體中的成員變量fd添加到全局變量readFds,下面會看到使用select監聽這個fd_set類型的變量 if (ev->fd >= nfds) nfds = ev->fd+1; dlog("~~~~ nfds = %d ~~~~", nfds); break; } } MUTEX_RELEASE(); dlog("~~~~ -ril_event_add ~~~~"); }
監聽事件
void ril_event_loop() { int n; fd_set rfds; struct timeval tv; struct timeval * ptv; for (;;) { // make local copy of read fd_set memcpy(&rfds, &readFds, sizeof(fd_set)); if (-1 == calcNextTimeout(&tv)) { // no pending timers; block indefinitely dlog("~~~~ no timers; blocking indefinitely ~~~~"); ptv = NULL; } else { dlog("~~~~ blocking for %ds + %dus ~~~~", (int)tv.tv_sec, (int)tv.tv_usec); ptv = &tv; } printReadies(&rfds); n = select(nfds, &rfds, NULL, NULL, ptv);//監聽對應的文件描述符是否發生變化 printReadies(&rfds);
第二個關鍵的函數就是RIL_register
關於怎麼把第三方庫的具體實現填充到本地指針上的前面已經說過,下面看如何監聽socker,獲取rilj發過來的消息
// start listen socket1 for (i = 0; i < SIM_COUNT; i++) { startListen((RIL_SOCKET_ID)(RIL_SOCKET_1+i), &s_ril_param_socket[i]);//RIL_SOCKET_ID是個枚舉結構,以下,這種用法學習了,主要看startListen的實現 } typedef enum { RIL_SOCKET_1, #if (SIM_COUNT >= 2) RIL_SOCKET_2, #if (SIM_COUNT >= 3) RIL_SOCKET_3, #endif #if (SIM_COUNT >= 4) RIL_SOCKET_4, #endif #endif RIL_SOCKET_NUM } RIL_SOCKET_ID;
static void startListen(RIL_SOCKET_ID socket_id, SocketListenParam* socket_listen_p) { int fdListen = -1; int ret; char socket_name[10]; memset(socket_name, 0, sizeof(char)*10); switch(socket_id) { case RIL_SOCKET_1: strncpy(socket_name, RIL_getRilSocketName(), 9); break; case RIL_SOCKET_2: strncpy(socket_name, SOCKET2_NAME_RIL, 9); break; case RIL_SOCKET_3: strncpy(socket_name, SOCKET3_NAME_RIL, 9); break; case RIL_SOCKET_4: strncpy(socket_name, SOCKET4_NAME_RIL, 9); break; default: RLOGE("Socket id is wrong!!"); return; } RLOGI("Start to listen socket_name: %s, socketId: %s", socket_name, rilSocketIdToString(socket_id)); fdListen = android_get_control_socket(socket_name);//這個是根據socket的名字得到對應的文件描述符,那麼這些socket在哪裏建立的呢,答案是在init進程中建立的,init在啓動rild服務執行fork之後在子進程的返回中會建立socket if (fdListen < 0) { RLOGE("Failed to get socket %s", socket_name); exit(-1); } ret = listen(fdListen, 4); if (ret < 0) { RLOGE("Failed to listen on control socket '%d': %s", fdListen, strerror(errno)); exit(-1); } socket_listen_p->fdListen = fdListen; /* note: non-persistent so we can accept only one connection at a time */ ril_event_set (socket_listen_p->listen_event, fdListen, false, listenCallback, socket_listen_p);//從這裏能夠看到當fd發生變化後,也就是收到rilj的消息後調用的是listenCallback rilEventAddWakeup (socket_listen_p->listen_event); }
#define SOCKET_NAME_RIL "rild" //這些均可以和.rc文件中定義的socket對應上,對mtk 6737n能夠去我上面說的那個rc文件中去找 #define SOCKET2_NAME_RIL "rild2" #define SOCKET3_NAME_RIL "rild3" #define SOCKET4_NAME_RIL "rild4"
p_info->fdCommand = fdCommand; p_rs = record_stream_new(p_info->fdCommand, MAX_COMMAND_BYTES); p_info->p_rs = p_rs; ril_event_set (p_info->commands_event, p_info->fdCommand, 1, p_info->processCommandsCallback, p_info);//本覺得找到了最終處理ril消息的地方,沒想到它只是添加了另外一個ril_event結構體,由這個結構體的回調函數processCommandsCallback處理,而這個函數又會調用到processClientCommandBuffer rilEventAddWakeup (p_info->commands_event);
#ifdef MTK_RIL { enqueue(pRI, buffer, buflen, NULL, socket_id); } #else pRI->pCI->dispatchFunction(p, pRI);//這個應該是尋找對應dispatch函數,分析完這個應該就能夠和上面的那個sim卡消息接住了 #endif
而看到每一個ril消息會對應一個處理函數的入口,就應該明白必然是有一張以這種結構體存在的表,而上面提到的函數即是負責爲每個ril消息尋找入口
{RIL_REQUEST_SEND_SMS, dispatchStrings, responseSMS}, {RIL_REQUEST_SEND_SMS_EXPECT_MORE, dispatchStrings, responseSMS}, {RIL_REQUEST_SETUP_DATA_CALL, dispatchDataCall, responseSetupDataCall}, {RIL_REQUEST_SIM_IO, dispatchSIM_IO, responseSIM_IO}, {RIL_REQUEST_SEND_USSD, dispatchString, responseVoid},
關於rilj層監聽rild socket中創建socket如何經過jni調用本地代碼可參考:
http://blog.csdn.net/yangzhihuiguming/article/details/51697801