序. multiprocessing
python中的多線程其實並非真正的多線程,若是想要充分地使用多核CPU的資源,在python中大部分狀況須要使用多進程。Python提供了很是好用的多進程包multiprocessing,只須要定義一個函數,Python會完成其餘全部事情。藉助這個包,能夠輕鬆完成從單進程到併發執行的轉換。multiprocessing支持子進程、通訊和共享數據、執行不一樣形式的同步,提供了Process、Queue、Pipe、Lock等組件。python
建立進程的類:Process([group [, target [, name [, args [, kwargs]]]]]),target表示調用對象,args表示調用對象的位置參數元組。kwargs表示調用對象的字典。name爲別名。group實質上不使用。
方法:is_alive()、join([timeout])、run()、start()、terminate()。其中,Process以start()啓動某個進程。編程
屬性:authkey、daemon(要經過start()設置)、exitcode(進程在運行時爲None、若是爲–N,表示被信號N結束)、name、pid。其中daemon是父進程終止後自動終止,且本身不能產生新進程,必須在start()以前設置。安全
例1.1:建立函數並將其做爲單個進程多線程
import multiprocessing import time def worker(interval): n = 5 while n > 0: print("The time is {0}".format(time.ctime())) time.sleep(interval) n -= 1 if __name__ == "__main__": p = multiprocessing.Process(target = worker, args = (3,)) p.start() print "p.pid:", p.pid print "p.name:", p.name print "p.is_alive:", p.is_alive()
結果併發
1
2
3
4
5
6
7
8
|
p.pid:
8736
p.name: Process
-1
p.is_alive: True
The time is Tue Apr
21
20:
55:
12
2015
The time is Tue Apr
21
20:
55:
15
2015
The time is Tue Apr
21
20:
55:
18
2015
The time is Tue Apr
21
20:
55:
21
2015
The time is Tue Apr
21
20:
55:
24
2015
|
例1.2:建立函數並將其做爲多個進程app
import multiprocessing import time def worker_1(interval): print "worker_1" time.sleep(interval) print "end worker_1" def worker_2(interval): print "worker_2" time.sleep(interval) print "end worker_2" def worker_3(interval): print "worker_3" time.sleep(interval) print "end worker_3" if __name__ == "__main__": p1 = multiprocessing.Process(target = worker_1, args = (2,)) p2 = multiprocessing.Process(target = worker_2, args = (3,)) p3 = multiprocessing.Process(target = worker_3, args = (4,)) p1.start() p2.start() p3.start() print("The number of CPU is:" + str(multiprocessing.cpu_count())) for p in multiprocessing.active_children(): print("child p.name:" + p.name + "\tp.id" + str(p.pid)) print "END!!!!!!!!!!!!!!!!!"
結果dom
1
2
3
4
5
6
7
8
9
10
11
|
The number of CPU is:
4
child p.name:Process
-3
p.id
7992
child p.name:Process
-2
p.id
4204
child p.name:Process
-1
p.id
6380
END!!!!!!!!!!!!!!!!!
worker_
1
worker_
3
worker_
2
end worker_
1
end worker_
2
end worker_
3
|
例1.3:將進程定義爲類async
import multiprocessing import time class ClockProcess(multiprocessing.Process): def __init__(self, interval): multiprocessing.Process.__init__(self) self.interval = interval def run(self): n = 5 while n > 0: print("the time is {0}".format(time.ctime())) time.sleep(self.interval) n -= 1 if __name__ == '__main__': p = ClockProcess(3) p.start()
注:進程p調用start()時,自動調用run()
結果
1
2
3
4
5
|
the time is Tue Apr
21
20:
31:
30
2015
the time is Tue Apr
21
20:
31:
33
2015
the time is Tue Apr
21
20:
31:
36
2015
the time is Tue Apr
21
20:
31:
39
2015
the time is Tue Apr
21
20:
31:
42
2015
|
例1.4:daemon程序對比結果
#1.4-1 不加daemon屬性
import multiprocessing import time def worker(interval): print("work start:{0}".format(time.ctime())); time.sleep(interval) print("work end:{0}".format(time.ctime())); if __name__ == "__main__": p = multiprocessing.Process(target = worker, args = (3,)) p.start() print "end!"
結果
1
2
3
|
end!
work start:Tue Apr
21
21:
29:
10
2015
work end:Tue Apr
21
21:
29:
13
2015
|
#1.4-2 加上daemon屬性
import multiprocessing import time def worker(interval): print("work start:{0}".format(time.ctime())); time.sleep(interval) print("work end:{0}".format(time.ctime())); if __name__ == "__main__": p = multiprocessing.Process(target = worker, args = (3,)) p.daemon = True p.start() print "end!"
結果
1
|
end!
|
注:因子進程設置了daemon屬性,主進程結束,它們就隨着結束了。
#1.4-3 設置daemon執行完結束的方法
import multiprocessing import time def worker(interval): print("work start:{0}".format(time.ctime())); time.sleep(interval) print("work end:{0}".format(time.ctime())); if __name__ == "__main__": p = multiprocessing.Process(target = worker, args = (3,)) p.daemon = True p.start() p.join() print "end!"
結果
1
2
3
|
work start:Tue Apr
21
22:
16:
32
2015
work end:Tue Apr
21
22:
16:
35
2015
end!
|
當多個進程須要訪問共享資源的時候,Lock能夠用來避免訪問的衝突。
import multiprocessing import sys def worker_with(lock, f): with lock: fs = open(f, 'a+') n = 10 while n > 1: fs.write("Lockd acquired via with\n") n -= 1 fs.close() def worker_no_with(lock, f): lock.acquire() try: fs = open(f, 'a+') n = 10 while n > 1: fs.write("Lock acquired directly\n") n -= 1 fs.close() finally: lock.release() if __name__ == "__main__": lock = multiprocessing.Lock() f = "file.txt" w = multiprocessing.Process(target = worker_with, args=(lock, f)) nw = multiprocessing.Process(target = worker_no_with, args=(lock, f)) w.start() nw.start() print "end"
結果(輸出文件)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
Lockd acquired via with
Lockd acquired via with
Lockd acquired via with
Lockd acquired via with
Lockd acquired via with
Lockd acquired via with
Lockd acquired via with
Lockd acquired via with
Lockd acquired via with
Lock acquired directly
Lock acquired directly
Lock acquired directly
Lock acquired directly
Lock acquired directly
Lock acquired directly
Lock acquired directly
Lock acquired directly
Lock acquired directly
|
Semaphore用來控制對共享資源的訪問數量,例如池的最大鏈接數。
import multiprocessing import time def worker(s, i): s.acquire() print(multiprocessing.current_process().name + "acquire"); time.sleep(i) print(multiprocessing.current_process().name + "release\n"); s.release() if __name__ == "__main__": s = multiprocessing.Semaphore(2) for i in range(5): p = multiprocessing.Process(target = worker, args=(s, i*2)) p.start()
結果
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
Process
-1
acquire
Process
-1
release
Process
-2
acquire
Process
-3
acquire
Process
-2
release
Process
-5
acquire
Process
-3
release
Process
-4
acquire
Process
-5
release
Process
-4
release
|
Event用來實現進程間同步通訊。
import multiprocessing import time def wait_for_event(e): print("wait_for_event: starting") e.wait() print("wairt_for_event: e.is_set()->" + str(e.is_set())) def wait_for_event_timeout(e, t): print("wait_for_event_timeout:starting") e.wait(t) print("wait_for_event_timeout:e.is_set->" + str(e.is_set())) if __name__ == "__main__": e = multiprocessing.Event() w1 = multiprocessing.Process(name = "block", target = wait_for_event, args = (e,)) w2 = multiprocessing.Process(name = "non-block", target = wait_for_event_timeout, args = (e, 2)) w1.start() w2.start() time.sleep(3) e.set() print("main: event is set")
結果
1
2
3
4
5
|
wait_for_event: starting
wait_for_event_timeout:starting
wait_for_event_timeout:e.is_set->False
main: event is set
wairt_for_event: e.is_set()->True
|
import multiprocessing def writer_proc(q): try: q.put(1, block = False) except: pass def reader_proc(q): try: print q.get(block = False) except: pass if __name__ == "__main__": q = multiprocessing.Queue() writer = multiprocessing.Process(target=writer_proc, args=(q,)) writer.start() reader = multiprocessing.Process(target=reader_proc, args=(q,)) reader.start() reader.join() writer.join()
結果
1
|
1
|
import multiprocessing import time def proc1(pipe): while True: for i in xrange(10000): print "send: %s" %(i) pipe.send(i) time.sleep(1) def proc2(pipe): while True: print "proc2 rev:", pipe.recv() time.sleep(1) def proc3(pipe): while True: print "PROC3 rev:", pipe.recv() time.sleep(1) if __name__ == "__main__": pipe = multiprocessing.Pipe() p1 = multiprocessing.Process(target=proc1, args=(pipe[0],)) p2 = multiprocessing.Process(target=proc2, args=(pipe[1],)) #p3 = multiprocessing.Process(target=proc3, args=(pipe[1],)) p1.start() p2.start() #p3.start() p1.join() p2.join() #p3.join()
結果
在利用Python進行系統管理的時候,特別是同時操做多個文件目錄,或者遠程控制多臺主機,並行操做能夠節約大量的時間。當被操做對象數目不大時,能夠直接利用multiprocessing中的Process動態成生多個進程,十幾個還好,但若是是上百個,上千個目標,手動的去限制進程數量卻又太過繁瑣,此時能夠發揮進程池的功效。
Pool能夠提供指定數量的進程,供用戶調用,當有新的請求提交到pool中時,若是池尚未滿,那麼就會建立一個新的進程用來執行該請求;但若是池中的進程數已經達到規定最大值,那麼該請求就會等待,直到池中有進程結束,纔會建立新的進程來它。
例7.1:使用進程池(非阻塞)
#coding: utf-8 import multiprocessing import time def func(msg): print "msg:", msg time.sleep(3) print "end" if __name__ == "__main__": pool = multiprocessing.Pool(processes = 3) for i in xrange(4): msg = "hello %d" %(i) pool.apply_async(func, (msg, )) #維持執行的進程總數爲processes,當一個進程執行完畢後會添加新的進程進去 print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~" pool.close() pool.join() #調用join以前,先調用close函數,不然會出錯。執行完close後不會有新的進程加入到pool,join函數等待全部子進程結束 print "Sub-process(es) done."
一次執行結果
1
2
3
4
5
6
7
8
9
10
|
mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~ello
0
msg: hello
1
msg: hello
2
end
msg: hello
3
end
end
end
Sub-process(es) done.
|
函數解釋:
執行說明:建立一個進程池pool,並設定進程的數量爲3,xrange(4)會相繼產生四個對象[0, 1, 2, 4],四個對象被提交到pool中,因pool指定進程數爲3,因此0、一、2會直接送到進程中執行,當其中一個執行完過後才空出一個進程處理對象3,因此會出現輸出「msg: hello 3」出如今"end"後。由於爲非阻塞,主函數會本身執行自個的,不搭理進程的執行,因此運行完for循環後直接輸出「mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~」,主程序在pool.join()處等待各個進程的結束。
例7.2:使用進程池(阻塞)
#coding: utf-8 import multiprocessing import time def func(msg): print "msg:", msg time.sleep(3) print "end" if __name__ == "__main__": pool = multiprocessing.Pool(processes = 3) for i in xrange(4): msg = "hello %d" %(i) pool.apply(func, (msg, )) #維持執行的進程總數爲processes,當一個進程執行完畢後會添加新的進程進去 print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~" pool.close() pool.join() #調用join以前,先調用close函數,不然會出錯。執行完close後不會有新的進程加入到pool,join函數等待全部子進程結束 print "Sub-process(es) done."
一次執行的結果
1
2
3
4
5
6
7
8
9
10
|
msg: hello
0
end
msg: hello
1
end
msg: hello
2
end
msg: hello
3
end
Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~
Sub-process(es) done.
|
例7.3:使用進程池,並關注結果
import multiprocessing import time def func(msg): print "msg:", msg time.sleep(3) print "end" return "done" + msg if __name__ == "__main__": pool = multiprocessing.Pool(processes=4) result = [] for i in xrange(3): msg = "hello %d" %(i) result.append(pool.apply_async(func, (msg, ))) pool.close() pool.join() for res in result: print ":::", res.get() print "Sub-process(es) done."
一次執行結果
1
2
3
4
5
6
7
8
9
10
|
msg: hello
0
msg: hello
1
msg: hello
2
end
end
end
::: donehello
0
::: donehello
1
::: donehello
2
Sub-process(es) done.
|
例7.4:使用多個進程池
#coding: utf-8 import multiprocessing import os, time, random def Lee(): print "\nRun task Lee-%s" %(os.getpid()) #os.getpid()獲取當前的進程的ID start = time.time() time.sleep(random.random() * 10) #random.random()隨機生成0-1之間的小數 end = time.time() print 'Task Lee, runs %0.2f seconds.' %(end - start) def Marlon(): print "\nRun task Marlon-%s" %(os.getpid()) start = time.time() time.sleep(random.random() * 40) end=time.time() print 'Task Marlon runs %0.2f seconds.' %(end - start) def Allen(): print "\nRun task Allen-%s" %(os.getpid()) start = time.time() time.sleep(random.random() * 30) end = time.time() print 'Task Allen runs %0.2f seconds.' %(end - start) def Frank(): print "\nRun task Frank-%s" %(os.getpid()) start = time.time() time.sleep(random.random() * 20) end = time.time() print 'Task Frank runs %0.2f seconds.' %(end - start) if __name__=='__main__': function_list= [Lee, Marlon, Allen, Frank] print "parent process %s" %(os.getpid()) pool=multiprocessing.Pool(4) for func in function_list: pool.apply_async(func) #Pool執行函數,apply執行函數,當有一個進程執行完畢後,會添加一個新的進程到pool中 print 'Waiting for all subprocesses done...' pool.close() pool.join() #調用join以前,必定要先調用close() 函數,不然會出錯, close()執行後不會有新的進程加入到pool,join函數等待素有子進程結束 print 'All subprocesses done.'
一次執行結果
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
parent process
7704
Waiting for
all
subprocesses done...
Run task Lee
-6948
Run task Marlon
-2896
Run task Allen
-7304
Run task Frank
-3052
Task Lee, runs
1.59
seconds.
Task Marlon runs
8.48
seconds.
Task Frank runs
15.68
seconds.
Task Allen runs
18.08
seconds.
All subprocesses done.
|