Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary). You may assume that the intervals were initially sorted according to their start times. Example 1: Given intervals [1,3],[6,9], insert and merge [2,5] in as [1,5],[6,9]. Example 2: Given [1,2],[3,5],[6,7],[8,10],[12,16], insert and merge [4,9] in as [1,2],[3,10],[12,16]. This is because the new interval [4,9] overlaps with [3,5],[6,7],[8,10].
給定一組順序排列且相互之間沒有重疊的區間,輸入一個區間,將它插入到當前的區間數組中,而且將須要合併的區間合併,以後返回插入而且合併後的區間。數組
任何一個區間數組中的區間能夠劃分爲三個類型,位於須要被合併的區間的前面的區間,須要被合併的區間,位於須要被合併的區間後面的區間。咱們將這三個類型的區間分別標註爲類型1,類型2,類型3。
區間類型1: 當前區間的最大值小於插入區間的最大值
區間類型3: 當前區間的最小值大於插入區間的最大值
區間類型2: 判斷比較複雜,能夠經過非區間類型1和區間類型3來歸類。在遇到區間類型二時,要更新插入區間的最大值和最小值app
代碼實現以下:
方法一:code
public List<Interval> insert(List<Interval> intervals, Interval newInterval) { List<Interval> result = new ArrayList<Interval>(); int index = 0; while(index<intervals.size() && intervals.get(index).end < newInterval.start){ result.add(intervals.get(index++)); } while(index<intervals.size() && intervals.get(index).start < newInterval.end){ newInterval.start = Math.min(intervals.get(index).start, newInterval.start); newInterval.end = Math.max(intervals.get(index).end, newInterval.end); index++; } result.add(newInterval); while(index<intervals.size()){ result.add(intervals.get(index++)); } return result; }
方法二:get
public List<Interval> insert2(List<Interval> intervals, Interval newInterval) { List<Interval> result = new ArrayList<Interval>(); for(Interval temp : intervals){ if(newInterval==null || temp.end < newInterval.start){ result.add(temp); }else if(temp.start > newInterval.end){ result.add(newInterval); result.add(temp); newInterval = null; }else{ newInterval.start = Math.min(newInterval.start, temp.start); newInterval.end = Math.max(newInterval.end, temp.end); } } return result; }