marshmallow快速上手

快速上手

Declaring Schemas

首先建立一個基礎的user「模型」(只是爲了演示,並非真正的模型):python

import datetime as dt

class User(object):
    def __init__(self, name, email):
        self.name = name
        self.email = email
        self.created_at = dt.datetime.now()

    def __repr__(self):
        return '<User(name={self.name!r})>'.format(self=self)

而後經過定義一個映射屬性名稱到Field對象的類建立schemaweb

from marshmallow import Schema, fields

class UserSchema(Schema):
    name = fields.Str()
    email = fields.Email()
    created_at = fields.DateTime()

Serializing Objects ("Dumping")

傳遞對象到建立的schema的dump方法,返回一個序列化字典對象(和一個錯誤字典對象,下文講):json

from marshmallow import pprint

user = User(name="Monty", email="monty@python.org")
schema = UserSchema()
result = schema.dump(user)
pprint(result.data)
# {"name": "Monty",
#  "email": "monty@python.org",
#  "created_at": "2014-08-17T14:54:16.049594+00:00"}

也可使用dumps方法序列化對象爲JSON字符串:segmentfault

json_result = schema.dumps(user)
pprint(json_result.data)
# '{"name": "Monty", "email": "monty@python.org", "created_at": "2014-08-17T14:54:16.049594+00:00"}'

Filtering output

使用only參數指定要序列化輸出的字段:數據結構

summary_schema = UserSchema(only=('name', 'email'))
summary_schema.dump(user).data
# {"name": "Monty Python", "email": "monty@python.org"}

使用exclude參數指定不進行序列化輸出的字段。函數

Deserializing Objects ("Loading")

dump方法對應的是load方法,它反序列化一個字典爲python數據結構。post

load方法默認返回一個fields字段和反序列化值對應的字典對象:ui

from pprint import pprint

user_data = {
    'created_at': '2014-08-11T05:26:03.869245',
    'email': u'ken@yahoo.com',
    'name': u'Ken'
}
schema = UserSchema()
result = schema.load(user_data)
pprint(result.data)
# {'name': 'Ken',
#  'email': 'ken@yahoo.com',
#  'created_at': datetime.datetime(2014, 8, 11, 5, 26, 3, 869245)}

Deserializing to Objects

Schema子類中定義一個方法並用post_load裝飾,該方法接收一個要反序列化的數據字典返回原始python對象:code

from marshmallow import Schema, fields, post_load

class UserSchema(Schema):
    name = fields.Str()
    email = fields.Email()
    created_at = fields.DateTime()

    @post_load
    def make_user(self, data):
        return User(**data)

如今調用load方法將返回一個User對象:orm

user_data = {
    'name': 'Ronnie',
    'email': 'ronnie@stones.com'
}
schema = UserSchema()
result = schema.load(user_data)
result.data  # => <User(name='Ronnie')>

Handling Collections of Objects

可迭代的對象集合也能夠進行序列化和反序列化。只須要設置many=True

user1 = User(name="Mick", email="mick@stones.com")
user2 = User(name="Keith", email="keith@stones.com")
users = [user1, user2]
schema = UserSchema(many=True)
result = schema.dump(users)  # OR UserSchema().dump(users, many=True)
result.data
# [{'name': u'Mick',
#   'email': u'mick@stones.com',
#   'created_at': '2014-08-17T14:58:57.600623+00:00'}
#  {'name': u'Keith',
#   'email': u'keith@stones.com',
#   'created_at': '2014-08-17T14:58:57.600623+00:00'}]

Validation

Schema.load()Schema.loads()返回值的第二個元素是一個驗證錯誤的字典。某些fields例如EmailURL內置了驗證器:

data, errors = UserSchema().load({'email': 'foo'})
errors  # => {'email': ['"foo" is not a valid email address.']}
# OR, equivalently
result = UserSchema().load({'email': 'foo'})
result.errors  # => {'email': ['"foo" is not a valid email address.']}

驗證集合時,錯誤字典將基於無效字段的索引做爲鍵:

class BandMemberSchema(Schema):
    name = fields.String(required=True)
    email = fields.Email()

user_data = [
    {'email': 'mick@stones.com', 'name': 'Mick'},
    {'email': 'invalid', 'name': 'Invalid'},  # invalid email
    {'email': 'keith@stones.com', 'name': 'Keith'},
    {'email': 'charlie@stones.com'},  # missing "name"
]

result = BandMemberSchema(many=True).load(user_data)
result.errors
# {1: {'email': ['"invalid" is not a valid email address.']},
#  3: {'name': ['Missing data for required field.']}}

經過給fields的validate參數傳遞callable對象,能夠執行額外的驗證:

class ValidatedUserSchema(UserSchema):
    # NOTE: This is a contrived example.
    # You could use marshmallow.validate.Range instead of an anonymous function here
    age = fields.Number(validate=lambda n: 18 <= n <= 40)

in_data = {'name': 'Mick', 'email': 'mick@stones.com', 'age': 71}
result = ValidatedUserSchema().load(in_data)
result.errors  # => {'age': ['Validator <lambda>(71.0) is False']}

驗證函數能夠返回布爾值或拋出ValidationError異常。若是是拋出異常,其信息將保存在錯誤字典中:

from marshmallow import Schema, fields, ValidationError

def validate_quantity(n):
    if n < 0:
        raise ValidationError('Quantity must be greater than 0.')
    if n > 30:
        raise ValidationError('Quantity must not be greater than 30.')

class ItemSchema(Schema):
    quantity = fields.Integer(validate=validate_quantity)

in_data = {'quantity': 31}
result, errors = ItemSchema().load(in_data)
errors  # => {'quantity': ['Quantity must not be greater than 30.']}

Field Validators as Methods

使用validates裝飾器註冊方法驗證器:

from marshmallow import fields, Schema, validates, ValidationError

class ItemSchema(Schema):
    quantity = fields.Integer()

    @validates('quantity')
    def validate_quantity(self, value):
        if value < 0:
            raise ValidationError('Quantity must be greater than 0.')
        if value > 30:
            raise ValidationError('Quantity must not be greater than 30.')

strict Mode

在schema構造器或class Meta中設置strict=True,遇到不合法數據時將拋出異常,經過ValidationError.messages屬性能夠訪問驗證錯誤的字典:

from marshmallow import ValidationError

try:
    UserSchema(strict=True).load({'email': 'foo'})
except ValidationError as err:
    print(err.messages)# => {'email': ['"foo" is not a valid email address.']}

Required Fields

設置required=True能夠定義一個必要字段,調用Schema.load()方法時若是字段值缺失將驗證失敗並保存錯誤信息。

error_messages參數傳遞一個dict對象能夠自定義必要字段的錯誤信息:

class UserSchema(Schema):
    name = fields.String(required=True)
    age = fields.Integer(
        required=True,
        error_messages={'required': 'Age is required.'}
    )
    city = fields.String(
        required=True,
        error_messages={'required': {'message': 'City required', 'code': 400}}
    )
    email = fields.Email()

data, errors = UserSchema().load({'email': 'foo@bar.com'})
errors
# {'name': ['Missing data for required field.'],
#  'age': ['Age is required.'],
#  'city': {'message': 'City required', 'code': 400}}

Partial Loading

經過指定partial參數,能夠忽略某些缺失字段的required檢查:

class UserSchema(Schema):
    name = fields.String(required=True)
    age = fields.Integer(required=True)

data, errors = UserSchema().load({'age': 42}, partial=('name',))
# OR UserSchema(partial=('name',)).load({'age': 42})
data, errors  # => ({'age': 42}, {})

或者設置partial=True忽略全部缺失字段的required檢查:

class UserSchema(Schema):
    name = fields.String(required=True)
    age = fields.Integer(required=True)

data, errors = UserSchema().load({'age': 42}, partial=True)
# OR UserSchema(partial=True).load({'age': 42})
data, errors  # => ({'age': 42}, {})

Schema.validate

使用Schema.validate()能夠只驗證輸入數據而不反序列化:

errors = UserSchema().validate({'name': 'Ronnie', 'email': 'invalid-email'})
errors  # {'email': ['"invalid-email" is not a valid email address.']}

Specifying Attribute Names

默認狀況下schema序列化處理和field名稱相同的對象屬性。對於屬性和field不相同的場景,經過attribute參數指定field處理哪一個屬性:

class UserSchema(Schema):
    name = fields.String()
    email_addr = fields.String(attribute="email")
    date_created = fields.DateTime(attribute="created_at")

user = User('Keith', email='keith@stones.com')
ser = UserSchema()
result, errors = ser.dump(user)
pprint(result)
# {'name': 'Keith',
#  'email_addr': 'keith@stones.com',
#  'date_created': '2014-08-17T14:58:57.600623+00:00'}

Specifying Deserialization Keys

默認狀況下schema反序列化處理鍵和field名稱相同的字典。能夠經過load_from參數指定額外處理的字典鍵值:

class UserSchema(Schema):
    name = fields.String()
    email = fields.Email(load_from='emailAddress')

data = {
    'name': 'Mike',
    'emailAddress': 'foo@bar.com'
}
s = UserSchema()
result, errors = s.load(data)
#{'name': u'Mike',
# 'email': 'foo@bar.com'}

Specifying Serialization Keys

若是要序列化輸出不想使用field名稱做爲鍵,能夠經過dump_to參數指定(和load_from相反):

class UserSchema(Schema):
    name = fields.String(dump_to='TheName')
    email = fields.Email(load_from='CamelCasedEmail', dump_to='CamelCasedEmail')

data = {
    'name': 'Mike',
    'email': 'foo@bar.com'
}
s = UserSchema()
result, errors = s.dump(data)
#{'TheName': u'Mike',
# 'CamelCasedEmail': 'foo@bar.com'}

Refactoring: Implicit Field Creation

當schema中有不少屬性時,爲每一個屬性指定field類型會產生大量的重複工做,尤爲是大部分屬性爲原生的python數據類型時。

class Meta容許開發人員指定序列化哪些屬性,Marshmallow會基於屬性類型選擇合適的field類型:

# 重構UserSchema
class UserSchema(Schema):
    uppername = fields.Function(lambda obj: obj.name.upper())

    class Meta:
        fields = ("name", "email", "created_at", "uppername")


user = User(name="erika", email="marshmallow@126.com")
schema = UserSchema()
result = schema.dump(user)
print(result.data)

# {'created_at': '2019-05-20T15:45:27.760000+00:00', 'uppername': 'ERIKA', 'name': 'erika', 'email': 'marshmallow@126.com'}

除了顯式聲明的field外,使用additional選項能夠指定還要包含哪些fields。如下代碼等同於上面的代碼:

class UserSchema(Schema):
    uppername = fields.Function(lambda obj: obj.name.upper())
    class Meta:
        # No need to include 'uppername'
        additional = ("name", "email", "created_at")

Ordering Output

設置ordered=True能夠維護序列化輸出的field順序,此時序列化字典爲collections.OrderedDict類型:

from collections import OrderedDict

class UserSchema(Schema):
    uppername = fields.Function(lambda obj: obj.name.upper())
    class Meta:
        fields = ("name", "email", "created_at", "uppername")
        ordered = True

u = User('Charlie', 'charlie@stones.com')
schema = UserSchema()
result = schema.dump(u)
assert isinstance(result.data, OrderedDict)
# marshmallow's pprint function maintains order
pprint(result.data, indent=2)
# {
#   "name": "Charlie",
#   "email": "charlie@stones.com",
#   "created_at": "2014-10-30T08:27:48.515735+00:00",
#   "uppername": "CHARLIE"
# }

"Read-only" and "Write-only" Fields

在web API上下文中,dump_onlyload_only參數分別相似於只讀和只寫的概念:

class UserSchema(Schema):
    name = fields.Str()
    # password is "write-only"
    password = fields.Str(load_only=True)
    # created_at is "read-only"
    created_at = fields.DateTime(dump_only=True)

更多教程

marshmallow之schema嵌套
marshmallow之自定義Field
marshmallow之Schema延伸功能

相關文章
相關標籤/搜索