numpy

np.sum()html

http://blog.csdn.net/ikerpeng/article/details/17026011python

咱們平時用的sum應該是默認的axis=0 就是普通的相加 (對不起,寫的很差,看下面的)git

 

而當加入axis=1之後就是將一個矩陣的每一行向量相加github

 

例如:app

import numpy as npless

np.sum([[0,1,2],[2,1,3]],axis=1)的結果就是:array([3,6])ide

 

但願能夠幫到你 呵呵學習

 

Sorry,之前學習階段寫東西比較隨意,如今補充完善一下:ui

1. python 本身的sum()this

輸入的參數首先是[]

 

[python]  view plain  copy
 
  1. >>> sum([0,1,2])  
  2. 3  
  3. >>> sum([0,1,2],3)  
  4. 6  
  5. >>> sum([0,1,2],[3,2,1])  
  6. Traceback (most recent call last):  
  7.   File "<stdin>", line 1, in <module>  
  8. TypeError: can only concatenate list (not "int") to list  



 

2.python的 numpy當中

如今對於數據的處理更多的仍是numpy。沒有axis參數表示所有相加,axis=0表示按列相加,axis=1表示按照行的方向相加

 

[python]  view plain  copy
 
    1. >>> import numpy as np  
    2. >>> a=np.sum([[0,1,2],[2,1,3]])  
    3. >>> a  
    4. 9  
    5. >>> a.shape  
    6. ()  
    7. >>> a=np.sum([[0,1,2],[2,1,3]],axis=0)  
    8. >>> a  
    9. array([2, 2, 5])  
    10. >>> a.shape  
    11. (3,)  
    12. >>> a=np.sum([[0,1,2],[2,1,3]],axis=1)  
    13. >>> a  
    14. array([3, 6])  
    15. >>> a.shape  
    16. (2,)  

http://www.cnblogs.com/100thMountain/p/4719488.html

numpy.sum

numpy. sum ( aaxis=Nonedtype=Noneout=Nonekeepdims=False ) [source]

Sum of array elements over a given axis.

Parameters:

a : array_like

Elements to sum.

axis : None or int or tuple of ints, optional

Axis or axes along which a sum is performed. The default (axis = None) is perform a sum over all the dimensions of the input array. axis may be negative, in which case it counts from the last to the first axis.

New in version 1.7.0.

If this is a tuple of ints, a sum is performed on multiple axes, instead of a single axis or all the axes as before.

dtype : dtype, optional

The type of the returned array and of the accumulator in which the elements are summed. By default, the dtype of a is used. An exception is when a has an integer type with less precision than the default platform integer. In that case, the default platform integer is used instead.

out : ndarray, optional

Array into which the output is placed. By default, a new array is created. If out is given, it must be of the appropriate shape (the shape of a with axis removed, i.e., numpy.delete(a.shape, axis)). Its type is preserved. See doc.ufuncs (Section 「Output arguments」) for more details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original arr.

Returns:

sum_along_axis : ndarray

An array with the same shape as a, with the specified axis removed. If a is a 0-d array, or if axis is None, a scalar is returned. If an output array is specified, a reference to out is returned.

See also

ndarray.sum
Equivalent method.
cumsum
Cumulative sum of array elements.
trapz
Integration of array values using the composite trapezoidal rule.

meanaverage

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>>
>>> np.sum([0.5, 1.5]) 2.0 >>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32) 1 >>> np.sum([[0, 1], [0, 5]]) 6 >>> np.sum([[0, 1], [0, 5]], axis=0) #axis=0是按列求和 array([0, 6]) >>> np.sum([[0, 1], [0, 5]], axis=1) #axis=1 是按行求和 array([1, 5]) 

If the accumulator is too small, overflow occurs:

>>>
>>> np.ones(128, dtype=np.int8).sum(dtype=np.int8) -128
相關文章
相關標籤/搜索
本站公眾號
   歡迎關注本站公眾號,獲取更多信息