時序數據庫Influx-IOx源碼學習八(Chunk持久化)

InfluxDB是一個由InfluxData開發的開源時序數據庫,專一於海量時序數據的高性能讀、寫、高效存儲與實時分析等,在DB-Engines Ranking時序型數據庫排行榜上常年排名第一。數據庫

InfluxDB能夠說是當之無愧的佼佼者,但 InfluxDB CTO Paul 在 2020/12/10 號在博客中發表一篇名爲:Announcing InfluxDB IOx – The Future Core of InfluxDB Built with Rust and Arrow的文章,介紹了一個新項目 InfluxDB IOx,InfluxDB 的下一代時序引擎。編程

接下來,我將連載對於InfluxDB IOx的源碼解析過程,歡迎各位批評指正,聯繫方式見文章末尾。微信


上一章介紹了Chunk是怎樣被管理的,以及各個階段的操做。詳情見: https://my.oschina.net/u/3374539/blog/5029926異步

這一章記錄一下Chunk是怎樣持久化的。async

ChunkState::Moved(_) if would_write => {
                    let partition_key = chunk_guard.key().to_string();
                    let table_name = chunk_guard.table_name().to_string();
                    let chunk_id = chunk_guard.id();
                    std::mem::drop(chunk_guard);
                    write_active = true;
                    //處於Moved狀態下的Chunk會調用write_to_object_store方法進行持久化
                    self.write_to_object_store(partition_key, table_name, chunk_id);
                }

//write_to_object_store實際調用到write_chunk_to_object_store_in_background方法來進行持久化
pub fn write_chunk_to_object_store_in_background(
        self: &Arc<Self>,
        partition_key: String,
        table_name: String,
        chunk_id: u32,
    ) -> TaskTracker<Job> {
        //獲取數據庫名稱
        let name = self.rules.read().name.clone();
        //新建一個後臺任務的管理器,用來記錄db中都在執行哪些任務及狀態,
        let (tracker, registration) = self.jobs.register(Job::WriteChunk {
            db_name: name.to_string(),
            partition_key: partition_key.clone(),
            table_name: table_name.clone(),
            chunk_id,
        });

        let captured = Arc::clone(&self);
        //異步寫入
        let task = async move {
            let result = captured
                //真正的寫入方法
                .write_chunk_to_object_store(&partition_key, &table_name, chunk_id)
                .await;
            if let Err(e) = result {
                info!(?e, %name, %partition_key, %chunk_id, "background task error loading object store chunk");
                return Err(e);
            }
            Ok(())
        };

        tokio::spawn(task.track(registration));

        tracker
    }

後面的方法有點兒長,但願可以耐心觀看。。性能

pub async fn write_chunk_to_object_store(
        &self,
        partition_key: &str,
        table_name: &str,
        chunk_id: u32,
    ) -> Result<Arc<DbChunk>> {
        //從catalog中取回chunk
        let chunk = {
            //先找partition
            let partition =
                self.catalog
                    .valid_partition(partition_key)
                    .context(LoadingChunkToParquet {
                        partition_key,
                        table_name,
                        chunk_id,
                    })?;
            let partition = partition.read();
            //從partition里根據表名和chunk_id拿到chunk
            partition
                .chunk(table_name, chunk_id)
                .context(LoadingChunkToParquet {
                    partition_key,
                    table_name,
                    chunk_id,
                })?
        };


        let rb_chunk = {
            //先加寫鎖
            let mut chunk = chunk.write();
            //修改Chunk的狀態爲WritingToObjectStore
            chunk
                .set_writing_to_object_store()
                .context(LoadingChunkToParquet {
                    partition_key,
                    table_name,
                    chunk_id,
                })?
        };

        //獲取全部Chunk下全部表的Statistics信息
        let table_stats = rb_chunk.table_summaries();

        //建立一個parquet Chunk,這個在上一章裏有提到各類Chunk類型
        let mut parquet_chunk = Chunk::new(
            partition_key.to_string(),
            chunk_id,
            //用來統計parquet佔用的內存
            self.memory_registries.parquet.as_ref(),
        );
        //建立一個Storage結構,使用的是啓動數據庫時候指定的存儲類型,這個在第3章裏有提到
        let storage = Storage::new(
            Arc::clone(&self.store),
            self.server_id,
            self.rules.read().name.to_string(),
        );
        //遍歷全部表的統計數據
        for stats in table_stats {
            //構建一個空的查詢,也就是 select * from table,不加where
            let predicate = read_buffer::Predicate::default();

            //從rb_chunk篩選數據, Selection::All表明全部列,predicate表明沒有where條件
            //意思就是 `stats` 指向的單個表內的全部數據
            let read_results = rb_chunk
                .read_filter(stats.name.as_str(), predicate, Selection::All)
                .context(ReadBufferChunkError {
                    table_name,
                    chunk_id,
                })?;
            //再拿出來schema信息,由於arrow是分開存的,因此須要拿兩次
            let arrow_schema: ArrowSchemaRef = rb_chunk
                .read_filter_table_schema(stats.name.as_str(), Selection::All)
                .context(ReadBufferChunkSchemaError {
                    table_name,
                    chunk_id,
                })?
                .into();
            //再拿出來這個表裏的最大最小的時間
            //這個是從readBuffer::Column::from裏完成的最大最小時間統計
            //也就是當從mutbuffer轉移到readbuffer的時候
            let time_range = rb_chunk.table_time_range(stats.name.as_str()).context(
                ReadBufferChunkTimestampError {
                    table_name,
                    chunk_id,
                },
            )?;
            //建立一個ReadFilterResultsStream
            //官方文檔裏面說的是這是一個轉變ReadFilterResults爲異步流的適配器
            let stream: SendableRecordBatchStream = Box::pin(
                streams::ReadFilterResultsStream::new(read_results, Arc::clone(&arrow_schema)),
            );

            // 寫到持久化存儲當中
            let path = storage
                .write_to_object_store(
                    partition_key.to_string(),
                    chunk_id,
                    stats.name.to_string(),
                    stream,
                )
                .await
                .context(WritingToObjectStore)?;

            // 這裏就是把寫入parquet的摘要信息存儲在內存中
            let schema = Arc::clone(&arrow_schema)
                .try_into()
                .context(SchemaConversion)?;
            let table_time_range = time_range.map(|(start, end)| TimestampRange::new(start, end));
            parquet_chunk.add_table(stats, path, schema, table_time_range);
        }

        //對`catlog::chunk`加寫鎖,而後更新這個chunk的狀態爲WrittenToObjectStore
        let mut chunk = chunk.write();
        let parquet_chunk = Arc::clone(&Arc::new(parquet_chunk));
        chunk
            .set_written_to_object_store(parquet_chunk)
            .context(LoadingChunkToParquet {
                partition_key,
                table_name,
                chunk_id,
            })?;
        //包裝`catlog::chunk`爲`ParquetChunk`
        Ok(DbChunk::snapshot(&chunk))
    }

這裏面看起來有點兒繞,不容易理解的就是chunk.set_written_to_object_store這種方法。ui

由於Rust中enum是存在變種的,因此基於這種特性,雖然都是Chunk,可是存儲的內容變化了。spa

pub enum ChunkState {
    ....省略
    //這裏就是mutbuffer裏的chunk
    Moving(Arc<MBChunk>),
    //這裏就變成存儲的readbuffer的chunk結構
    Moved(Arc<ReadBufferChunk>),
    //這裏又開始存儲ParquetChunk結構
    WrittenToObjectStore(Arc<ReadBufferChunk>, Arc<ParquetChunk>),
}

還須要繼續查看storage.write_to_object_store這個邏輯,這裏涉及到了從memarrow結構轉爲Parquet結構,就不在文章中展現了,使用的是arrowArrowWriter直接轉換的。.net

//這裏直接跳躍到ObjectStore的put方法裏,來看怎麼組織的寫入
    async fn put<S>(&self, location: &Self::Path, bytes: S, length: Option<usize>) -> Result<()>
    where
        S: Stream<Item = io::Result<Bytes>> + Send + Sync + 'static,
    {
        use ObjectStoreIntegration::*;
        //匹配啓動時候配置的存儲方式,轉到真正的實現去,這裏只看文件的
        match (&self.0, location) {
             ...省略

           //文件存儲 
            (File(file), path::Path::File(location)) => file
                .put(location, bytes, length)
                .await
                .context(FileObjectStoreError)?,
            _ => unreachable!(),
        }

        Ok(())
    }

//爲File實現了ObjectStoreApi trait,至關於文件存儲時候的實際實現
async fn put<S>(&self, location: &Self::Path, bytes: S, length: Option<usize>) -> Result<()>
    where
        S: Stream<Item = io::Result<Bytes>> + Send + Sync + 'static,
    {
        //讀取以前ReadFilterResultsStream裏的全部數據到content裏
        let content = bytes
            .map_ok(|b| bytes::BytesMut::from(&b[..]))
            .try_concat()
            .await
            .context(UnableToStreamDataIntoMemory)?;
        //這裏就是一個驗證長度不然報錯DataDoesNotMatchLength。宏編程,不用關注
        if let Some(length) = length {
            ensure!(
                content.len() == length,
                DataDoesNotMatchLength {
                    actual: content.len(),
                    expected: length,
                }
            );
        }
        //獲取文件路徑,就是啓動時候配置的根路徑加上數據路徑
        let path = self.path(location);
        //建立這個文件出來
        let mut file = match fs::File::create(&path).await {
            Ok(f) => f,
            //若是是沒有找到父路徑,那就重新建立一次
            Err(err) if err.kind() == std::io::ErrorKind::NotFound => {
                let parent = path
                    .parent()
                    .context(UnableToCreateFile { path: &path, err })?;
                fs::create_dir_all(&parent)
                    .await
                    .context(UnableToCreateDir { path: parent })?;

                match fs::File::create(&path).await {
                    Ok(f) => f,
                    Err(err) => return UnableToCreateFile { path, err }.fail(),
                }
            }
            //不然就失敗了
            Err(err) => return UnableToCreateFile { path, err }.fail(),
        };
        //這裏就是拷貝全部數據到這個文件中去
        tokio::io::copy(&mut &content[..], &mut file)
            .await
            .context(UnableToCopyDataToFile)?;
        //大功告成
        Ok(())
    }

這個寫入的邏輯比較龐大了,可是基本也能捋清楚。線程

  1. 先寫入mutBuffer,寫到必定大小會關閉
  2. 異步線程來監控是否是該關掉mutBuffer
  3. 生命週期的轉換,而後開始寫入readBuffer
  4. 以後開始異步的寫入持久化存儲
  5. 檢查內存是否是須要清理readbuffer

大概就這些。源代碼中還有不少邏輯沒有完成,好比WAL。先總體看完流程再回來看遺漏的,留給Influx寫更多完整邏輯的時間。

祝玩兒的開心。


歡迎關注微信公衆號:

或添加微信好友: liutaohua001

相關文章
相關標籤/搜索