消息(Message)是指在應用間傳送的數據。消息能夠很是簡單,好比只包含文本字符串,也能夠更復雜,可能包含嵌入對象。python
消息隊列(Message Queue)是一種應用間的通訊方式,消息發送後能夠當即返回,由消息系統來確保消息的可靠傳遞。消息發佈者只管把消息發佈到 MQ 中而不用管誰來取,消息使用者只管從 MQ 中取消息而不論是誰發佈的。這樣發佈者和使用者都不用知道對方的存在。服務器
從上面的描述中能夠看出消息隊列是一種應用間的異步協做機制,那何時須要使用 MQ 呢?負載均衡
以常見的訂單系統爲例,用戶點擊【下單】按鈕以後的業務邏輯可能包括:扣減庫存、生成相應單據、發紅包、發短信通知。在業務發展初期這些邏輯可能放在一塊兒同步執行,隨着業務的發展訂單量增加,須要提高系統服務的性能,這時能夠將一些不須要當即生效的操做拆分出來異步執行,好比發放紅包、發短信通知等。這種場景下就能夠用 MQ ,在下單的主流程(好比扣減庫存、生成相應單據)完成以後發送一條消息到 MQ 讓主流程快速完結,而由另外的單獨線程拉取MQ的消息(或者由 MQ 推送消息),當發現 MQ 中有發紅包或發短信之類的消息時,執行相應的業務邏輯。 異步
RabbitMQ 是一個由 Erlang 語言開發的 AMQP 的開源實現。
rabbitMQ是一款基於AMQP協議的消息中間件,它可以在應用之間提供可靠的消息傳輸。在易用性,擴展性,高可用性上表現優秀。使用消息中間件利於應用之間的解耦,生產者(客戶端)無需知道消費者(服務端)的存在。並且兩端可使用不一樣的語言編寫,大大提供了靈活性。ide
安裝配置epel源 $ rpm -ivh http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm 安裝erlang $ yum -y install erlang 安裝RabbitMQ $ yum -y install rabbitmq-server 注意:service rabbitmq-server start/stop
# brew install rabbitmq # export PATH=$PATH:/usr/local/sbin # rabbitmq-server
示例函數
# ######################### 生產者 ######################### #!/usr/bin/env python import pika connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost')) channel = connection.channel() channel.queue_declare(queue='hello') channel.basic_publish(exchange='', routing_key='hello', body='Hello World!') print(" [x] Sent 'Hello World!'") connection.close()
# ########################## 消費者 ########################## connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost')) channel = connection.channel() channel.queue_declare(queue='hello') def callback(ch, method, properties, body): print(" [x] Received %r" % body) # 須要producer確認以後在刪除消息內容的時候須要將no_ack置爲False channel.basic_consume( callback, queue='hello', no_ack=True) print(' [*] Waiting for messages. To exit press CTRL+C') channel.start_consuming()
no-ack = False,若是消費者遇到狀況(its channel is closed, connection is closed, or TCP connection is lost)掛掉了,那麼,RabbitMQ會從新將該任務添加到隊列中。性能
- 回調函數中的
ch.basic_ack(delivery_tag=method.delivery_tag)
- basic_comsume中的
no_ack=False
import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='10.211.55.4'))
channel = connection.channel()fetch
channel.queue_declare(queue='hello')ui
def callback(ch, method, properties, body):
print(" [x] Received %r" % body)
import time
time.sleep(10)
print 'ok'
ch.basic_ack(delivery_tag = method.delivery_tag)線程
channel.basic_consume(callback,
queue='hello',
no_ack=False)
print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()
2. durable:消息不丟失
#!/usr/bin/env python
import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
channel = connection.channel()
channel.queue_declare(queue='hello', durable=True)
channel.basic_publish(exchange='',
routing_key='hello',
body='Hello World!',
properties=pika.BasicProperties(
delivery_mode=2, # make message persistent
))
print(" [x] Sent 'Hello World!'")
connection.close()
#!/usr/bin/env python
import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
channel = connection.channel()
channel.queue_declare(queue='hello', durable=True)
def callback(ch, method, properties, body):
print(" [x] Received %r" % body)
import time
time.sleep(10)
print 'ok'
ch.basic_ack(delivery_tag = method.delivery_tag)
channel.basic_consume(callback,
queue='hello',
no_ack=False)
print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()
3. 消息獲取順序 默認消息隊列裏的數據是按照順序被消費者拿走,例如:消費者1 去隊列中獲取 奇數 序列的任務,消費者1去隊列中獲取 偶數 序列的任務。 channel.basic\_qos(prefetch\_count=1) 表示誰來誰獲取消費就分發給消費者,再也不按照奇偶數排列
#!/usr/bin/env python
import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
channel = connection.channel()
channel.queue_declare(queue='hello')
def callback(ch, method, properties, body):
print(" [x] Received %r" % body)
import time
time.sleep(10)
print 'ok'
ch.basic_ack(delivery_tag = method.delivery_tag)
channel.basic_qos(prefetch_count=1)
channel.basic_consume(callback,
queue='hello',
no_ack=False)
print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()
## 三. exchange交換機模型 ### 3.1 發佈訂閱 ![模型圖](https://img-blog.csdnimg.cn/20201107170240838.png) 發佈訂閱和簡單的消息隊列區別在於,發佈訂閱會將消息發送給全部的訂閱者,而消息隊列中的數據被消費一次便消失。因此,RabbitMQ實現發佈和訂閱時,會爲每個訂閱者建立一個隊列,而發佈者發佈消息時,會將消息放置在全部相關隊列中。
#!/usr/bin/env python
import pika
import sys
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='logs',
exchange_type='fanout')
message = ' '.join(sys.argv[1:]) or "info: Hello World!"
channel.basic_publish(exchange='logs',
routing_key='',
body=message)
print(" [x] Sent %r" % message)
connection.close()
#!/usr/bin/env python
import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='logs',
exchange_type='fanout')
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue
channel.queue_bind(exchange='logs',
queue=queue_name)
print(' [*] Waiting for logs. To exit press CTRL+C')
def callback(ch, method, properties, body):
print(" [x] %r" % body)
channel.basic_consume(callback,
queue=queue_name,
no_ack=True)
channel.start_consuming()
### 3.2 關鍵字發送 ![模型圖](https://img-blog.csdnimg.cn/20201107170350176.png) 以前示例,發送消息時明確指定某個隊列並向其中發送消息,RabbitMQ還支持根據關鍵字發送,即:隊列綁定關鍵字,發送者將數據根據關鍵字發送到消息exchange,exchange根據 關鍵字 斷定應該將數據發送至指定隊列。
#!/usr/bin/env python
import pika
import sys
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='direct_logs',
exchange_type='direct')
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue
severities = sys.argv[1:]
if not severities:
sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])
sys.exit(1)
for severity in severities:
channel.queue_bind(exchange='direct_logs',
queue=queue_name,
routing_key=severity)
print(' [*] Waiting for logs. To exit press CTRL+C')
def callback(ch, method, properties, body):
print(" [x] %r:%r" % (method.routing_key, body))
channel.basic_consume(callback,
queue=queue_name,
no_ack=True)
channel.start_consuming()
### 3.3 模糊匹配 ![模型圖](https://img-blog.csdnimg.cn/20201107170430114.png) | 發送者路由值 | 隊列中 | | --- | --- | | www.weshuke.python | old.* -- 不匹配 | | age.weshuke.python | old.# -- 匹配 | 在topic類型下,可讓隊列綁定幾個模糊的關鍵字,以後發送者將數據發送到exchange,exchange將傳入」路由值「和 」關鍵字「進行匹配,匹配成功,則將數據發送到指定隊列。 * \# 表示能夠匹配 0 個 或 多個 單詞 * \* 表示只能匹配 一個 單詞
#!/usr/bin/env python
import pika
import sys
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='topic_logs',
exchange_type='topic')
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue
binding_keys = sys.argv[1:]
if not binding_keys:
sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0])
sys.exit(1)
for binding_key in binding_keys:
channel.queue_bind(exchange='topic_logs',
queue=queue_name,
routing_key=binding_key)
print(' [*] Waiting for logs. To exit press CTRL+C')
def callback(ch, method, properties, body):
print(" [x] %r:%r" % (method.routing_key, body))
channel.basic_consume(callback,
queue=queue_name,
no_ack=True)
channel.start_consuming()
## 基於RabbitMQ的RPC ### Callback queue 回調隊列 一個客戶端向服務器發送請求,服務器端處理請求後,將其處理結果保存在一個存儲體中。而客戶端爲了得到處理結果,那麼客戶在向服務器發送請求時,同時發送一個回調隊列地址`reply_to`。 ### Correlation id 關聯標識 一個客戶端可能會發送多個請求給服務器,當服務器處理完後,客戶端沒法辨別在回調隊列中的響應具體和那個請求時對應的。爲了處理這種狀況,客戶端在發送每一個請求時,同時會附帶一個獨有`correlation_id`屬性,這樣客戶端在回調隊列中根據`correlation_id`字段的值就能夠分辨此響應屬於哪一個請求。 1. 客戶端發送請求:某個應用將請求信息交給客戶端,而後客戶端發送RPC請求,在發送RPC請求到RPC請求隊列時,客戶端至少發送帶有reply\_to以及correlation\_id兩個屬性的信息 2. 服務器端工做流: 等待接受客戶端發來RPC請求,當請求出現的時候,服務器從RPC請求隊列中取出請求,而後處理後,將響應發送到reply_to指定的回調隊列中. 3. 客戶端接受處理結果: 客戶端等待回調隊列中出現響應,當響應出現時,它會根據響應中correlation_id字段的值,將其返回給對應的應用. ### 服務器端
#!/usr/bin/env python
import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.queue_declare(queue='rpc_queue')
def fib(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return fib(n-1) + fib(n-2)
def on_request(ch, method, props, body):
n = int(body)
print(" [.] fib(%s)" % n) # 調用數據處理方法 response = fib(n) # 將處理結果(響應)發送到回調隊列 ch.basic_publish(exchange='', routing_key=props.reply_to, properties=pika.BasicProperties(correlation_id = \ props.correlation_id), body=str(response)) ch.basic_ack(delivery_tag = method.delivery_tag)
channel.basic_qos(prefetch_count=1)
channel.basic_consume(on_request, queue='rpc_queue')
print(" [x] Awaiting RPC requests")
channel.start_consuming()
### 客戶端
#!/usr/bin/env python
import pika
import uuid
class FibonacciRpcClient(object):
def init(self):
」「」
客戶端啓動時,建立回調隊列,會開啓會話用於發送RPC請求以及接受響應
「」「 # 創建鏈接,指定服務器的ip地址 self.connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost')) # 創建一個會話,每一個channel表明一個會話任務 self.channel = self.connection.channel() # 聲明回調隊列,再次聲明的緣由是,服務器和客戶端可能前後開啓,該聲明是冪等的,屢次聲明,但只生效一次 result = self.channel.queue_declare(exclusive=True) # 將次隊列指定爲當前客戶端的回調隊列 self.callback_queue = result.method.queue # 客戶端訂閱回調隊列,當回調隊列中有響應時,調用`on_response`方法對響應進行處理; self.channel.basic_consume(self.on_response, no_ack=True, queue=self.callback_queue) # 對回調隊列中的響應進行處理的函數 def on_response(self, ch, method, props, body): if self.corr_id == props.correlation_id: self.response = body # 發出RPC請求 def call(self, n): # 初始化 response self.response = None #生成correlation_id self.corr_id = str(uuid.uuid4()) # 發送RPC請求內容到RPC請求隊列`rpc_queue`,同時發送的還有`reply_to`和`correlation_id` self.channel.basic_publish(exchange='', routing_key='rpc_queue', properties=pika.BasicProperties( reply_to = self.callback_queue, correlation_id = self.corr_id, ), body=str(n)) while self.response is None: self.connection.process_data_events() return int(self.response)
fibonacci_rpc = FibonacciRpcClient()
print(" [x] Requesting fib(30)")response = fibonacci_rpc.call(30)print(" [.] Got %r" % response)