詳談高性能UDP服務器的開發
上一篇文章我詳細介紹瞭如何開發一款高性能的TCP服務器的網絡傳輸層.本章我將談談如何開發一個高性能的UDP服務器的網絡層.UDP服務器的網絡層開發相對與TCP服務器來講要容易和簡單的多,UDP服務器的大體流程爲建立一個socket而後將其綁定到完成端口上並投遞必定數量的recv操做.當有數據到來時從完成隊列中取出數據發送到接收隊列中便可。
測試結果以下:
WindowsXP Professional,Intel Core Duo E4600 雙核2.4G , 2G內存。同時30K個用戶和該UDP服務器進行交互其CPU使用率爲10%左右,內存佔用7M左右。
下面詳細介紹該服務器的架構及流程:
1. 首先介紹服務器的接收和發送緩存
UDP_CONTEXT。
1
class
UDP_CONTEXT :
protected
NET_CONTEXT
2
{
3
friend class UdpSer;
4
protected:
5
IP_ADDR m_RemoteAddr; //對端地址
6
7
enum
8
{
9
HEAP_SIZE = 1024 * 1024 * 5,
10
MAX_IDL_DATA = 10000,
11
};
12
13
public:
14
UDP_CONTEXT() {}
15
virtual ~UDP_CONTEXT() {}
16
17
void* operator new(size_t nSize);
18
void operator delete(void* p);
19
20
private:
21
static vector<UDP_CONTEXT* > s_IDLQue;
22
static CRITICAL_SECTION s_IDLQueLock;
23
static HANDLE s_hHeap;
24
}
;
UDP_CONTEXT的實現流程和TCP_CONTEXT的實現流程大體相同,此處就不進行詳細介紹。
2. UDP_RCV_DATA,當服務器收到客戶端發來的數據時會將數據以UDP_RCV_DATA的形式放入到數據接收隊列中,其聲明以下:
1
class
DLLENTRY UDP_RCV_DATA
2
{
3
friend class UdpSer;
4
public:
5
CHAR* m_pData; //數據緩衝區
6
INT m_nLen; //數據的長度
7
IP_ADDR m_PeerAddr; //發送報文的地址
8
9
UDP_RCV_DATA(const CHAR* szBuf, int nLen, const IP_ADDR& PeerAddr);
10
~UDP_RCV_DATA();
11
12
void* operator new(size_t nSize);
13
void operator delete(void* p);
14
15
enum
16
{
17
RCV_HEAP_SIZE = 1024 * 1024 *50, //s_Heap堆的大小
18
DATA_HEAP_SIZE = 100 * 1024* 1024, //s_DataHeap堆的大小
19
MAX_IDL_DATA = 250000,
20
};
21
22
private:
23
static vector<UDP_RCV_DATA* > s_IDLQue;
24
static CRITICAL_SECTION s_IDLQueLock;
25
static HANDLE s_DataHeap; //數據緩衝區的堆
26
static HANDLE s_Heap; //RCV_DATA的堆
27
}
;
UDP_RCV_DATA的實現和TCP_RCV_DATA大體相同, 此處不在詳細介紹.
下面將主要介紹UdpSer類, 該類主要用來管理UDP服務.其定義以下:
1
class
DLLENTRY UdpSer
2
{
3
public:
4
UdpSer();
5
~UdpSer();
6
7
/************************************************************************
8
* Desc : 初始化靜態資源,在申請UDP實例對象以前應先調用該函數, 不然程序沒法正常運行
9
************************************************************************/
10
static void InitReource();
11
12
/************************************************************************
13
* Desc : 在釋放UDP實例之後, 掉用該函數釋放相關靜態資源
14
************************************************************************/
15
static void ReleaseReource();
16
17
//用指定本地地址和端口進行初始化
18
BOOL StartServer(const CHAR* szIp = "0.0.0.0", INT nPort = 0);
19
20
//從數據隊列的頭部獲取一個接收數據, pCount不爲null時返回隊列的長度
21
UDP_RCV_DATA* GetRcvData(DWORD* pCount);
22
23
//向對端發送數據
24
BOOL SendData(const IP_ADDR& PeerAddr, const CHAR* szData, INT nLen);
25
26
/****************************************************
27
* Name : CloseServer()
28
* Desc : 關閉服務器
29
****************************************************/
30
void CloseServer();
31
32
protected:
33
SOCKET m_hSock;
34
vector<UDP_RCV_DATA* > m_RcvDataQue; //接收數據隊列
35
CRITICAL_SECTION m_RcvDataLock; //訪問m_RcvDataQue的互斥鎖
36
long volatile m_bThreadRun; //是否容許後臺線程繼續運行
37
BOOL m_bSerRun; //服務器是否正在運行
38
39
HANDLE *m_pThreads; //線程數組
40
HANDLE m_hCompletion; //完成端口句柄
41
42
void ReadCompletion(BOOL bSuccess, DWORD dwNumberOfBytesTransfered, LPOVERLAPPED lpOverlapped);
43
44
/****************************************************
45
* Name : WorkThread()
46
* Desc : I/O 後臺管理線程
47
****************************************************/
48
static UINT WINAPI WorkThread(LPVOID lpParam);
49
}
;
1. InitReource() 主要對相關的靜態資源進行初始化.其實大體和TcpServer::InitReource()大體相同.在UdpSer實例使用以前必須調用該函數進行靜態資源的初始化, 不然服務器沒法正常使用.
2.ReleaseReource() 主要對相關靜態資源進行釋放.只有在應用程序結束時才能調用該函數進行靜態資源的釋放.
3. StartServer()
該函數的主要功能啓動一個UDP服務.其大體流程爲先建立服務器UDP socket, 將其綁定到完成端口上而後投遞必定數量的recv操做以接收客戶端的數據.其實現以下:
1
BOOL UdpSer::StartServer(
const
CHAR
*
szIp
/* = */
, INT nPort
/* = 0 */
)
2
{
3
BOOL bRet = TRUE;
4
const int RECV_COUNT = 500;
5
WSABUF RcvBuf = { NULL, 0 };
6
DWORD dwBytes = 0;
7
DWORD dwFlag = 0;
8
INT nAddrLen = sizeof(IP_ADDR);
9
INT iErrCode = 0;
10
11
try
12
{
13
if (m_bSerRun)
14
{
15
THROW_LINE;
16
}
17
18
m_bSerRun = TRUE;
19
m_hSock = WSASocket(AF_INET, SOCK_DGRAM, 0, NULL, 0, WSA_FLAG_OVERLAPPED);
20
if (INVALID_SOCKET == m_hSock)
21
{
22
THROW_LINE;
23
}
24
ULONG ul = 1;
25
ioctlsocket(m_hSock, FIONBIO, &ul);
26
27
//設置爲地址重用,優勢在於服務器關閉後能夠當即啓用
28
int nOpt = 1;
29
setsockopt(m_hSock, SOL_SOCKET, SO_REUSEADDR, (char*)&nOpt, sizeof(nOpt));
30
31
//關閉系統緩存,使用本身的緩存以防止數據的複製操做
32
INT nZero = 0;
33
setsockopt(m_hSock, SOL_SOCKET, SO_SNDBUF, (char*)&nZero, sizeof(nZero));
34
setsockopt(m_hSock, SOL_SOCKET, SO_RCVBUF, (CHAR*)&nZero, sizeof(nZero));
35
36
IP_ADDR addr(szIp, nPort);
37
if (SOCKET_ERROR == bind(m_hSock, (sockaddr*)&addr, sizeof(addr)))
38
{
39
closesocket(m_hSock);
40
THROW_LINE;
41
}
42
43
//將SOCKET綁定到完成端口上
44
CreateIoCompletionPort((HANDLE)m_hSock, m_hCompletion, 0, 0);
45
46
//投遞讀操做
47
for (int nIndex = 0; nIndex < RECV_COUNT; nIndex++)
48
{
49
UDP_CONTEXT* pRcvContext = new UDP_CONTEXT();
50
if (pRcvContext && pRcvContext->m_pBuf)
51
{
52
dwFlag = 0;
53
dwBytes = 0;
54
nAddrLen = sizeof(IP_ADDR);
55
RcvBuf.buf = pRcvContext->m_pBuf;
56
RcvBuf.len = UDP_CONTEXT::S_PAGE_SIZE;
57
58
pRcvContext->m_hSock = m_hSock;
59
pRcvContext->m_nOperation = OP_READ;
60
iErrCode = WSARecvFrom(pRcvContext->m_hSock, &RcvBuf, 1, &dwBytes, &dwFlag, (sockaddr*)(&pRcvContext->m_RemoteAddr)
61
, &nAddrLen, &(pRcvContext->m_ol), NULL);
62
if (SOCKET_ERROR == iErrCode && ERROR_IO_PENDING != WSAGetLastError())
63
{
64
delete pRcvContext;
65
pRcvContext = NULL;
66
}
67
}
68
else
69
{
70
delete pRcvContext;
71
}
72
}
73
}
74
catch (const long &lErrLine)
75
{
76
bRet = FALSE;
77
_TRACE("Exp : %s -- %ld ", __FILE__, lErrLine);
78
}
79
80
return bRet;
81
}
4. GetRcvData(), 從接收隊列中取出一個數據包.
1
UDP_RCV_DATA
*
UdpSer::GetRcvData(DWORD
*
pCount)
2
{
3
UDP_RCV_DATA* pRcvData = NULL;
4
5
EnterCriticalSection(&m_RcvDataLock);
6
vector<UDP_RCV_DATA* >::iterator iterRcv = m_RcvDataQue.begin();
7
if (iterRcv != m_RcvDataQue.end())
8
{
9
pRcvData = *iterRcv;
10
m_RcvDataQue.erase(iterRcv);
11
}
12
13
if (pCount)
14
{
15
*pCount = (DWORD)(m_RcvDataQue.size());
16
}
17
LeaveCriticalSection(&m_RcvDataLock);
18
19
return pRcvData;
20
}
5. SendData() 發送指定長度的數據包.
1
BOOL UdpSer::SendData(
const
IP_ADDR
&
PeerAddr,
const
CHAR
*
szData, INT nLen)
2
{
3
BOOL bRet = TRUE;
4
try
5
{
6
if (nLen >= 1500)
7
{
8
THROW_LINE;
9
}
10
11
UDP_CONTEXT* pSendContext = new UDP_CONTEXT();
12
if (pSendContext && pSendContext->m_pBuf)
13
{
14
pSendContext->m_nOperation = OP_WRITE;
15
pSendContext->m_RemoteAddr = PeerAddr;
16
17
memcpy(pSendContext->m_pBuf, szData, nLen);
18
19
WSABUF SendBuf = { NULL, 0 };
20
DWORD dwBytes = 0;
21
SendBuf.buf = pSendContext->m_pBuf;
22
SendBuf.len = nLen;
23
24
INT iErrCode = WSASendTo(m_hSock, &SendBuf, 1, &dwBytes, 0, (sockaddr*)&PeerAddr, sizeof(PeerAddr), &(pSendContext->m_ol), NULL);
25
if (SOCKET_ERROR == iErrCode && ERROR_IO_PENDING != WSAGetLastError())
26
{
27
delete pSendContext;
28
THROW_LINE;
29
}
30
}
31
else
32
{
33
delete pSendContext;
34
THROW_LINE;
35
}
36
}
37
catch (const long &lErrLine)
38
{
39
bRet = FALSE;
40
_TRACE("Exp : %s -- %ld ", __FILE__, lErrLine);
41
}
42
43
return bRet;
44
}
6. CloseServer() 關閉服務
1
void
UdpSer::CloseServer()
2
{
3
m_bSerRun = FALSE;
4
closesocket(m_hSock);
5
}
7. WorkThread() 在完成端口上工做的後臺線程
1
UINT WINAPI UdpSer::WorkThread(LPVOID lpParam)
2
{
3
UdpSer *pThis = (UdpSer *)lpParam;
4
DWORD dwTrans = 0, dwKey = 0;
5
LPOVERLAPPED pOl = NULL;
6
UDP_CONTEXT *pContext = NULL;
7
8
while (TRUE)
9
{
10
BOOL bOk = GetQueuedCompletionStatus(pThis->m_hCompletion, &dwTrans, &dwKey, (LPOVERLAPPED *)&pOl, WSA_INFINITE);
11
12
pContext = CONTAINING_RECORD(pOl, UDP_CONTEXT, m_ol);
13
if (pContext)
14
{
15
switch (pContext->m_nOperation)
16
{
17
case OP_READ:
18
pThis->ReadCompletion(bOk, dwTrans, pOl);
19
break;
20
case OP_WRITE:
21
delete pContext;
22
pContext = NULL;
23
break;
24
}
25
}
26
27
if (FALSE == InterlockedExchangeAdd(&(pThis->m_bThreadRun), 0))
28
{
29
break;
30
}
31
}
32
33
return 0;
34
}
8.ReadCompletion(), 接收操做完成後的回調函數
1
void
UdpSer::ReadCompletion(BOOL bSuccess, DWORD dwNumberOfBytesTransfered, LPOVERLAPPED lpOverlapped)
2
{
3
UDP_CONTEXT* pRcvContext = CONTAINING_RECORD(lpOverlapped, UDP_CONTEXT, m_ol);
4
WSABUF RcvBuf = { NULL, 0 };
5
DWORD dwBytes = 0;
6
DWORD dwFlag = 0;
7
INT nAddrLen = sizeof(IP_ADDR);
8
INT iErrCode = 0;
9
10
if (TRUE == bSuccess && dwNumberOfBytesTransfered <= UDP_CONTEXT::S_PAGE_SIZE)
11
{
12
#ifdef _XML_NET_
13
EnterCriticalSection(&m_RcvDataLock);
14
15
UDP_RCV_DATA* pRcvData = new UDP_RCV_DATA(pRcvContext->m_pBuf, dwNumberOfBytesTransfered, pRcvContext->m_RemoteAddr);
16
if (pRcvData && pRcvData->m_pData)
17
{
18
m_RcvDataQue.push_back(pRcvData);
19
}
20
else
21
{
22
delete pRcvData;
23
}
24
25
LeaveCriticalSection(&m_RcvDataLock);
26
#else
27
if (dwNumberOfBytesTransfered >= sizeof(PACKET_HEAD))
28
{
29
EnterCriticalSection(&m_RcvDataLock);
30
31
UDP_RCV_DATA* pRcvData = new UDP_RCV_DATA(pRcvContext->m_pBuf, dwNumberOfBytesTransfered, pRcvContext->m_RemoteAddr);
32
if (pRcvData && pRcvData->m_pData)
33
{
34
m_RcvDataQue.push_back(pRcvData);
35
}
36
else
37
{
38
delete pRcvData;
39
}
40
41
LeaveCriticalSection(&m_RcvDataLock);
42
}
43
#endif
44
45
//投遞下一個接收操做
46
RcvBuf.buf = pRcvContext->m_pBuf;
47
RcvBuf.len = UDP_CONTEXT::S_PAGE_SIZE;
48
49
iErrCode = WSARecvFrom(pRcvContext->m_hSock, &RcvBuf, 1, &dwBytes, &dwFlag, (sockaddr*)(&pRcvContext->m_RemoteAddr)
50
, &nAddrLen, &(pRcvContext->m_ol), NULL);
51
if (SOCKET_ERROR == iErrCode && ERROR_IO_PENDING != WSAGetLastError())
52
{
53
ATLTRACE("\r\n%s -- %ld dwNumberOfBytesTransfered = %ld, LAST_ERR = %ld"
54
, __FILE__, __LINE__, dwNumberOfBytesTransfered, WSAGetLastError());
55
delete pRcvContext;
56
pRcvContext = NULL;
57
}
58
}
59
else
60
{
61
delete pRcvContext;
62
}
63
}
歡迎關注本站公眾號,獲取更多信息