// tarjan算法求無向圖的橋、邊雙連通份量並縮點 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<vector> using namespace std; const int SIZE = 100010; int head[SIZE], ver[SIZE * 2], Next[SIZE * 2]; int dfn[SIZE], low[SIZE], c[SIZE]; int n, m, tot, num, dcc, tc; bool bridge[SIZE * 2]; int hc[SIZE], vc[SIZE * 2], nc[SIZE * 2]; void add(int x, int y) { ver[++tot] = y, Next[tot] = head[x], head[x] = tot; } void add_c(int x, int y) { vc[++tc] = y, nc[tc] = hc[x], hc[x] = tc; } void tarjan(int x, int in_edge) { dfn[x] = low[x] = ++num; for (int i = head[x]; i; i = Next[i]) { int y = ver[i]; //當前點未走過 if (!dfn[y]) { tarjan(y, i); low[x] = min(low[x], low[y]); if (low[y] > dfn[x]) //i 與 i^1是橋 bridge[i] = bridge[i ^ 1] = true; } //反向邊更新 else if (i != (in_edge ^ 1)) low[x] = min(low[x], dfn[y]); } } void dfs(int x) { c[x] = dcc; for (int i = head[x]; i; i = Next[i]) { int y = ver[i]; if (c[y] || bridge[i]) continue; dfs(y); } } int main() { cin >> n >> m; tot = 1; for (int i = 1; i <= m; i++) { int x, y; scanf("%d%d", &x, &y); add(x, y), add(y, x); } for (int i = 1; i <= n; i++) if (!dfn[i]) tarjan(i, 0); for (int i = 2; i < tot; i += 2) if (bridge[i])//當前橋,輸出連通橋的兩點 printf("%d %d\n", ver[i ^ 1], ver[i]); //求邊雙連通份量(不存在橋) for (int i = 1; i <= n; i++) if (!c[i]) { ++dcc; dfs(i); } printf("There are %d e-DCCs.\n", dcc); for (int i = 1; i <= n; i++) printf("%d belongs to DCC %d.\n", i, c[i]); //縮點 tc = 1; for (int i = 2; i <= tot; i++) { int x = ver[i ^ 1], y = ver[i]; if (c[x] == c[y]) continue; add_c(c[x], c[y]); } printf("縮點以後的森林,點數 %d,邊數 %d\n", dcc, tc / 2); for (int i = 2; i < tc; i += 2) printf("%d %d\n", vc[i ^ 1], vc[i]); }