squeeze 壓縮維度爲1的numpy向量dom
argmax 獲取最大值的下標函數
np.random.shuffle(index)code
reshape是從低維度到高維度。max,sum等函數都是注意axis,不選擇就是全體計算。import
swapaxes 轉換軸,將兩個選擇的軸對調,在CNN中X乘W有的時候須要拉伸,若是軸不一樣結果不對。變量
看print 出來的np.array,最後在一維的是最後的維度。numpy
能夠看下面的示例。im
import numpy as np a=np.arange(3*4*5).reshape(3,4,5) # array([[[ 0, 1, 2, 3, 4], # [ 5, 6, 7, 8, 9], # [10, 11, 12, 13, 14], # [15, 16, 17, 18, 19]], # # [[20, 21, 22, 23, 24], # [25, 26, 27, 28, 29], # [30, 31, 32, 33, 34], # [35, 36, 37, 38, 39]], # # [[40, 41, 42, 43, 44], # [45, 46, 47, 48, 49], # [50, 51, 52, 53, 54], # [55, 56, 57, 58, 59]]]) b=a.reshape(6,10) # array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], # [10, 11, 12, 13, 14, 15, 16, 17, 18, 19], # [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], # [30, 31, 32, 33, 34, 35, 36, 37, 38, 39], # [40, 41, 42, 43, 44, 45, 46, 47, 48, 49], # [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]]) b.swapaxes(1,2) # array([[[ 0, 5, 10, 15], # [ 1, 6, 11, 16], # [ 2, 7, 12, 17], # [ 3, 8, 13, 18], # [ 4, 9, 14, 19]], # # [[20, 25, 30, 35], # [21, 26, 31, 36], # [22, 27, 32, 37], # [23, 28, 33, 38], # [24, 29, 34, 39]], # # [[40, 45, 50, 55], # [41, 46, 51, 56], # [42, 47, 52, 57], # [43, 48, 53, 58], # [44, 49, 54, 59]]])
random.randn(n) n這裏指的是獲取n個獨立高斯分佈的變量,使用元組就是幫你reshape一下。co
所以若是直接用n=1000,那麼方差就是1000而不是1,這裏要注意。壓縮
np.random.randn(100).reshape(10,5,2)