在java.util.concurrent包下面的不少類爲了追求性能都採用了sun.misc.Unsafe類中的CAS操做,從而避免使用synchronized等加鎖方式帶來性能上的不足。html
在sun.misc.Unsafe中CAS方法以下:java
1 public final native boolean compareAndSwapObject(Object var1, long var2, Object var4, Object var5); 2 3 public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5); 4 5 public final native boolean compareAndSwapLong(Object var1, long var2, long var4, long var6);
在JDK1.8中只有上述三個CAS方法,其方法參數含義爲:var1爲待修改的field對象;var2爲field對象偏移量,爲long型;var4爲指望值;var5或var6爲替換值,當var1[offset] == var4則設置var1[offset] = var5(var6)。app
這三個方法都是native方法,能夠查看hotspot源碼查看其底層實現:(hotspot/src/share/vm/prims/unsafe.cpp)函數
1 #define FN_PTR(f) CAST_FROM_FN_PTR(void*, &f) 2 3 {CC"compareAndSwapObject", CC"("OBJ"J"OBJ""OBJ")Z", FN_PTR(Unsafe_CompareAndSwapObject)}, 4 {CC"compareAndSwapInt", CC"("OBJ"J""I""I"")Z", FN_PTR(Unsafe_CompareAndSwapInt)}, 5 {CC"compareAndSwapLong", CC"("OBJ"J""J""J"")Z", FN_PTR(Unsafe_CompareAndSwapLong)},
1 UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject e_h, jobject x_h)) 2 UnsafeWrapper("Unsafe_CompareAndSwapObject"); 3 oop x = JNIHandles::resolve(x_h); // 更新值 4 oop e = JNIHandles::resolve(e_h); // 指望值 5 oop p = JNIHandles::resolve(obj); // 更新對象 6 HeapWord* addr = (HeapWord *)index_oop_from_field_offset_long(p, offset); // 根據偏移量offset獲取內存中的具體位置 7 oop res = oopDesc::atomic_compare_exchange_oop(x, addr, e, true); // 調用方法執行CAS操做 8 jboolean success = (res == e); // 若是返回值res==e則代表知足compare條件,swap成功 9 if (success) 10 update_barrier_set((void*)addr, x); // 更新memory barrier 11 return success; 12 UNSAFE_END 13 14 UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x)) 15 UnsafeWrapper("Unsafe_CompareAndSwapInt"); 16 oop p = JNIHandles::resolve(obj); 17 jint* addr = (jint *) index_oop_from_field_offset_long(p, offset); 18 return (jint)(Atomic::cmpxchg(x, addr, e)) == e; 19 UNSAFE_END 20 21 UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapLong(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong e, jlong x)) 22 UnsafeWrapper("Unsafe_CompareAndSwapLong"); 23 Handle p (THREAD, JNIHandles::resolve(obj)); 24 jlong* addr = (jlong*)(index_oop_from_field_offset_long(p(), offset)); 25 if (VM_Version::supports_cx8()) 26 return (jlong)(Atomic::cmpxchg(x, addr, e)) == e; 27 else { 28 jboolean success = false; 29 ObjectLocker ol(p, THREAD); 30 if (*addr == e) { *addr = x; success = true; } 31 return success; 32 } 33 UNSAFE_END
先來看下Unsafe_CompareAndSwapObject方法,該方法經過調用index_oop_from_field_offset_long方法找到須要執行CAS對象的具體地址,而後調用atomic_compare_exchange_oop方法執行CAS操做。oop
繼續深刻atomic_compare_exchange_oop方法看一下,源碼以下源碼分析
1 // 聲明在hotspot/src/share/vm/oops/oop.hpp 2 static oop atomic_compare_exchange_oop(oop exchange_value, 3 volatile HeapWord *dest, 4 oop compare_value, 5 bool prebarrier = false); 6 7 // 定義在hotspot/src/share/vm/oops/oop.inline.hpp 8 inline oop oopDesc::atomic_compare_exchange_oop(oop exchange_value, 9 volatile HeapWord *dest, 10 oop compare_value, 11 bool prebarrier) { 12 if (UseCompressedOops) { 13 if (prebarrier) { 14 update_barrier_set_pre((narrowOop*)dest, exchange_value); 15 } 16 // encode exchange and compare value from oop to T 17 narrowOop val = encode_heap_oop(exchange_value); 18 narrowOop cmp = encode_heap_oop(compare_value); 19 20 narrowOop old = (narrowOop) Atomic::cmpxchg(val, (narrowOop*)dest, cmp); 21 // decode old from T to oop 22 return decode_heap_oop(old); 23 } else { 24 if (prebarrier) { 25 update_barrier_set_pre((oop*)dest, exchange_value); 26 } 27 return (oop)Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value); 28 } 29 }
在atomic_compare_exchange_oop方法中,核心的CAS操做最終是調用了Atomic::cmpxchg(val, (narrowOop*)dest, cmp)函數或者Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value)函數。性能
Atomic::cmpxchg(val, (narrowOop*)dest, cmp)函數雖然有不少重載函數,但最終都是調用的下面的函數:ui
1 // hotspot/src/share/vm/runtime/Atomic.cpp 2 jbyte Atomic::cmpxchg(jbyte exchange_value, volatile jbyte* dest, jbyte compare_value) { 3 assert(sizeof(jbyte) == 1, "assumption."); 4 uintptr_t dest_addr = (uintptr_t)dest; 5 uintptr_t offset = dest_addr % sizeof(jint); 6 volatile jint* dest_int = (volatile jint*)(dest_addr - offset); 7 jint cur = *dest_int; // 對象當前值 8 jbyte* cur_as_bytes = (jbyte*)(&cur); // 當前值cur的地址 9 jint new_val = cur; 10 jbyte* new_val_as_bytes = (jbyte*)(&new_val); // new_val地址 11 // new_val存exchange_value,後面修改則直接從new_val中取值 12 new_val_as_bytes[offset] = exchange_value; 13 // 比較當前值與指望值,若是相同則更新,不一樣則直接返回 14 while (cur_as_bytes[offset] == compare_value) { 15 // 調用匯編指令cmpxchg執行CAS操做,指望值爲cur,更新值爲new_val 16 jint res = cmpxchg(new_val, dest_int, cur); 17 if (res == cur) break; 18 cur = res; 19 new_val = cur; 20 new_val_as_bytes[offset] = exchange_value; 21 } 22 // 返回當前值 23 return cur_as_bytes[offset]; 24 }
Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value)函數在不一樣系統中都有各自的聲明,可是最終都是調用的下面的函數:this
1 // hotspot/src/os_cpu/solaris_x86/vm/Atomic_solaris_x86.inline.hpp 2 3 // This is the interface to the atomic instruction in solaris_i486.s. 4 jlong _Atomic_cmpxchg_long_gcc(jlong exchange_value, volatile jlong* dest, jlong compare_value, int mp); 5 6 inline jlong _Atomic_cmpxchg_long(jlong exchange_value, volatile jlong* dest, jlong compare_value, int mp) { 7 #ifdef AMD64 8 __asm__ __volatile__ (LOCK_IF_MP(%4) "cmpxchgq %1,(%3)" 9 : "=a" (exchange_value) 10 : "r" (exchange_value), "a" (compare_value), "r" (dest), "r" (mp) 11 : "cc", "memory"); 12 return exchange_value; 13 #else 14 return _Atomic_cmpxchg_long_gcc(exchange_value, dest, compare_value, os::is_MP()); 15 16 #if 0 17 // The code below does not work presumably because of the bug in gcc 18 // The error message says: 19 // can't find a register in class BREG while reloading asm 20 // However I want to save this code and later replace _Atomic_cmpxchg_long_gcc 21 // with such inline asm code: 22 23 volatile jlong_accessor evl, cvl, rv; 24 evl.long_value = exchange_value; 25 cvl.long_value = compare_value; 26 int mp = os::is_MP(); 27 28 __asm__ volatile ("cmp $0, %%esi\n\t" 29 "je 1f \n\t" 30 "lock\n\t" 31 "1: cmpxchg8b (%%edi)\n\t" 32 : "=a"(cvl.words[0]), "=d"(cvl.words[1]) 33 : "a"(cvl.words[0]), "d"(cvl.words[1]), 34 "b"(evl.words[0]), "c"(evl.words[1]), 35 "D"(dest), "S"(mp) 36 : "cc", "memory"); 37 return cvl.long_value; 38 #endif // if 0 39 #endif // AMD64 40 }
在這個方法中廢棄了32位系統的cmpxchg8b指令實現CAS操做方式,只提供了AMD64位操做系統cmpxchgq指令實現方式。atom
從上面能夠看出不管是Atomic::cmpxchg(val, (narrowOop*)dest, cmp)函數或者Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value)函數,兩者最終都是經過一條彙編指令實現CAS操做的。
Unsafe_CompareAndSwapInt和Unsafe_CompareAndSwapLong兩個方法都是調用Atomic::cmpxchg(val, (narrowOop*)dest, cmp)函數實現的,這個函數上面已經解釋過。
綜合上面的源碼分析,能夠知道sun.misc.Unsafe類中的CAS都是經過一條彙編指令實現的,這也就不難理解爲何這個操做能夠保證原子性了。
參考文章:
http://blog.csdn.net/qqqqq1993qqqqq/article/details/75211993
https://www.cnblogs.com/dennyzhangdd/p/6734933.html