應該是個經典算法,稍微記錄一下c++
用\(w[i]\)表示重量,\(v[i]\)表示價值算法
那麼不難寫出轉移方程數組
\(f[i][j] = max(f[i - 1][j - k * w[i]] + k * v[i])\)優化
考慮用單調隊列優化。spa
咱們若要用單調隊列優化,那麼必須知足轉移時所須要的狀態只與\(k\)有關code
這裏要用到一個神仙操做,對\(j \% w[i]\)分類隊列
由於對於\(\% j\)後相同的數,轉移時只有\(k\)的值不相同。get
設\(a = \frac{j}{w[i]}, b = j \% w[i]\)it
那麼轉移方程能夠寫成class
\(f[i][j] = max(f[i - 1][b + k * w[i]] - k * v[i]]) + a * v[i]\)
對每一個\(j \% w[i]\)分別維護單調隊列便可。。
同時\(f\)數組能夠滾動一下
#include<bits/stdc++.h> #define LL long long using namespace std; const int MAXN = 1001; inline int read() { int x = 0, f = 1; char c = getchar(); while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } int N, M, C, q[10001]; LL f[10001], val[10001]; main() { N = read(); M = read(); C = read(); for(int i = 1; i<= N; i++) { int w = read(), v = read(), d = read(); for(int b = 0; b < w; b++) {//b = j % w 原體積爲j = k * w + b for(int k = 0, h = 1, t = 0, j = b; j <= C; k++, j += w) { int a = k * v, tmp = f[j] - a;// a = j / w * v = k * v while(h <= t && tmp > val[q[t]]) t--; q[++t] = k; val[q[t]] = tmp;//因爲這裏的val須要被更新事後才能使用,所以不用清空 while(h <= t && q[h] + d < k) h++;//須要的物品超過d個 f[j] = val[q[h]] + a; } } } for(int i = 1; i <= M; i++) { int a = read(), b = read(), c = read();// for(int j = C; j >= 0; j--)//枚舉一下體積 for(int k = 0; k <= j; k++) f[j] = max(f[j], f[j - k] + (a * k + b) * k + c); } cout << f[C]; return 0; }