再xgboost的源碼中有xgboost的SparkWithDataFrame的實現,以下:https://github.com/dmlc/xgboost/tree/master/jvm-packages。可是因爲各類各樣的緣由吧,這些代碼在個人IDE裏面編譯不過,所以又寫了以下代碼以供之後查閱使用。git
package xgboost import ml.dmlc.xgboost4j.scala.spark.{XGBoost, XGBoostModel} import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics import org.apache.spark.sql.{Row, DataFrame, SparkSession} object App{ def main(args: Array[String]): Unit ={ val trainPath: String = "xxx/train.txt" val testPath: String = "xxx/test.txt" val binaryModelPath: String = "xxx/model.binary" val textModelPath: String = "xxx/model.txt" val spark = SparkSession .builder() .master("yarn") .getOrCreate() // define xgboost parameters val maxDepth = 3 val numRound = 4 val nworker = 1 val paramMap = List( "eta" -> 0.1, "max_depth" -> maxDepth, "objective" -> "binary:logistic").toMap //read libsvm file var dfTrain = spark.read.format("libsvm").load(trainPath).toDF("labelCol", "featureCol") var dfTest = spark.read.format("libsvm").load(testPath).toDF("labelCol", "featureCol") dfTrain.show(true) printf("begin...") val model:XGBoostModel = XGBoost.trainWithDataFrame(dfTrain, paramMap, numRound, nworker, useExternalMemory = true, featureCol = "featureCol", labelCol = "labelCol", missing = 0.0f) //predict the test set val predict:DataFrame = model.transform(dfTest) val scoreAndLabels = predict.select(model.getPredictionCol, model.getLabelCol) .rdd .map{case Row(score:Double, label:Double) => (score, label)} //get the auc val metric = new BinaryClassificationMetrics(scoreAndLabels) val auc = metric.areaUnderROC() println("auc:" + auc) //save model this.saveBinaryModel(model, spark, binaryModelPath) this.saveTextModel(model, spark, textModelPath, numRound, maxDepth) } def saveBinaryModel(model:XGBoostModel, spark: SparkSession, path: String): Unit = { model.saveModelAsHadoopFile(path)(spark.sparkContext) } def saveTextModel(model:XGBoostModel, spark: SparkSession, path: String, numRound: Int, maxDepth: Int): Unit = { val dumpModel = model .booster .getModelDump() .toList .zipWithIndex .map(x => s"booster:[${x._2}]\n${x._1}") val header = s"numRound: $numRound, maxDepth: $maxDepth" print(dumpModel) import spark.implicits._ val text: List[String] = header +: dumpModel text.toDF .coalesce(1) .write .mode("overwrite") .text(path) } }
其中:github
1.訓練集和測試集都是libsvm格式,以下所示:sql
1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1apache
2.最終生成的模型以下所示:jvm
numRound: 4, maxDepth: 3 booster:[0] 0:[f29<2] yes=1,no=2,missing=2 1:leaf=0.152941 2:leaf=-0.191209 booster:[1] 0:[f29<2] yes=1,no=2,missing=2 1:leaf=0.141901 2:leaf=-0.174499 booster:[2] 0:[f29<2] yes=1,no=2,missing=2 1:leaf=0.132731 2:leaf=-0.161685 booster:[3] 0:[f29<2] yes=1,no=2,missing=2 1:leaf=0.124972 2:leaf=-0.15155
相關解釋:」numRound: 4, maxDepth: 3」表示生成樹的個數爲4,樹的最大深度爲3;booster[n]表示第n棵樹;如下保存樹的結構,0號節點爲根節點,每一個節點有兩個子節點,節點序號按層序技術,即1號和2號節點爲根節點0號節點的子節點,相同層的節點有相同縮進,且比父節點多一級縮進。
在節點行,首先聲明節點序號,中括號裏寫明該節點採用第幾個特徵(如f29即爲訓練數據的第29個特徵),同時代表特徵值劃分條件,「[f29<2] yes=1,no=2,missing=2」:表示f29號特徵大於2時該樣本劃分到1號葉子節點,f29>=2時劃分到2號葉子節點,當沒有該特徵(None)劃分到2號葉子節點。oop
3.預測的結果以下:測試
|labelCol|featureCol |probabilities |prediction| |1.0 |(126,[2,9,10,20,29,33,35,39,40,52,57,64,68,76,85,87,91,94,101,104,116,123],[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0])|[0.3652743101119995,0.6347256898880005]|1.0 | |0.0 |(126,[2,9,19,20,22,33,35,38,40,52,55,64,68,76,85,87,91,94,101,105,115,119],[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0])|[0.6635029911994934,0.3364970088005066]|0.0 |