比賽連接:https://codeforces.com/contest/1333ios
比賽的時候,寫D的時候用了cin,cout的優化結果仍是被卡了,看來cin,cout得少用。c++
A - Little Artem
給你n * m的矩陣,只有B和W,相鄰有其餘不同的點成爲好點,讓好點B的數量多於W。那麼直接讓左上角的一塊爲B其他爲W便可。數組
![](http://static.javashuo.com/static/loading.gif)
![](http://static.javashuo.com/static/loading.gif)
1 #include <iostream> 2 #include <cstdio> 3 #include <bits/stdc++.h> 4 using namespace std; 5 6 const int N = 1e5 + 10; 7 8 int n, m; 9 int T; 10 11 int main() 12 { 13 cin >> T; 14 while(T --) 15 { 16 scanf("%d%d", &n, &m); 17 for (int i = 1; i <= n; i ++) 18 { 19 20 for (int j = 1; j <= m; j ++) 21 { 22 if(i == 1 && j == 1) 23 { 24 cout << "W"; 25 } 26 else 27 cout << "B"; 28 } 29 cout << endl; 30 } 31 } 32 }
B - Kind Anton
給定一個n,長度爲n的a數組和b數組,a[i]∈{1, -1, 0},m爲任意整數,a[i]只能+a[j](j < i),那麼根據題意,從後向前模擬便可。ide
![](http://static.javashuo.com/static/loading.gif)
![](http://static.javashuo.com/static/loading.gif)
1 #include <iostream> 2 #include <cstdio> 3 #include <bits/stdc++.h> 4 using namespace std; 5 6 const int N = 1e5 + 10; 7 8 int n, m; 9 int T; 10 int a[N]; 11 int b[N]; 12 map<int, int>s; 13 14 int main() 15 { 16 cin >> T; 17 while(T --) 18 { 19 s.clear(); 20 scanf("%d", &n); 21 for (int i = 1; i <= n; i ++) 22 scanf("%d", &a[i]), s[a[i]]++; 23 for (int i = 1; i <= n; i ++) 24 scanf("%d", &b[i]); 25 bool flag = true, flag2 = false; 26 bool t1 = false; 27 bool t2 = false; 28 for (int i = n; i >= 1; i --) 29 { 30 s[a[i]] --; 31 if(a[i] == b[i]) continue; 32 if(a[i] < b[i]) 33 { 34 if(!s[1]) 35 { 36 flag = false; 37 break; 38 } 39 } 40 if(a[i] > b[i]) 41 { 42 if(!s[-1]) 43 { 44 flag = false; 45 break; 46 } 47 } 48 } 49 if(flag) 50 { 51 puts("YES"); 52 } 53 else 54 { 55 puts("NO"); 56 } 57 } 58 59 }
C - Eugene and an array
給定長度爲n的序列,定義序列a爲「好的」,當且僅當,a的子段中不存在sum值爲0。那麼根據題意,若sum[a[i]]在i前面存在,那麼這樣的序列只能最後一次取到sum[a[i]]的下標k之後,數量爲i - k。優化
![](http://static.javashuo.com/static/loading.gif)
![](http://static.javashuo.com/static/loading.gif)
1 #include<bits/stdc++.h> 2 using namespace std; 3 typedef long long ll; 4 const int N = 2e5+10; 5 ll a[N]; 6 map<ll, ll>mp; 7 int main() 8 { 9 ll n; 10 scanf("%lld", &n); 11 for(int i = 1; i <= n; i++) 12 scanf("%lld", &a[i]); 13 ll sum = 0, res = 0, last = 0; 14 mp[0] = 1; 15 for(int i = 1; i <= n; i++) 16 { 17 sum += a[i]; 18 if(mp[sum]) last = max(last, mp[sum]); 19 res += i - last; 20 mp[sum] = i+1; 21 22 } 23 printf("%lld\n", res); 24 }
D - Challenges in school №41
有一個n個箭頭箭頭序列,只能是L(左箭頭)或者R(右箭頭),每次操做能夠選一對相鄰的相對的箭頭變成相背的箭頭。每秒操做至少1次,求可以剛好k秒把整個箭頭序列變成沒有任何相對的箭頭。spa
那麼最後的序列確定是LLLL...LLRRR....R這樣,那麼能夠暴力算出每一輪能移多少而且至少移幾輪。由於n只有3000,最壞狀況下o(n²),知足條件。code
當出現RL的時候就把R的下標保存。當RLL的時候要移倆輪,因此每次有RL存在,i++。blog
那麼假設算出x輪,一共須要移y次。那麼存在有解的狀況的必定是x <= k && k <= y的。而後去貪心分配輪的次數,實現具體看代碼。排序
![](http://static.javashuo.com/static/loading.gif)
![](http://static.javashuo.com/static/loading.gif)
1 #include<bits/stdc++.h> 2 using namespace std; 3 typedef long long ll; 4 const int N = 3e3+10; 5 char s[N]; 6 int n, k; 7 vector<int>a[N]; 8 9 int main() 10 { 11 scanf("%d%d", &n, &k); 12 scanf("%s", s + 1); 13 int cnt = 0; 14 while(1) 15 { 16 cnt ++; 17 bool flag = true; 18 for (int i = 1; i < n; i ++) 19 { 20 if(s[i] == 'R' && s[i + 1] == 'L') 21 { 22 flag = false; 23 a[cnt].push_back(i); 24 swap(s[i], s[i + 1]); 25 i ++; 26 } 27 } 28 if(flag) 29 { 30 break; 31 } 32 } 33 cnt --; 34 if(cnt == 0) 35 { 36 puts("-1"); 37 return 0; 38 } 39 ll res = 0; 40 for (int i = 1; i <= cnt; i ++) 41 { 42 res += a[i].size(); 43 } 44 if(res < k || cnt > k) 45 { 46 puts("-1"); 47 return 0; 48 } 49 ll tmp = k - cnt; 50 for (int i = 1; i <= n; i ++) 51 { 52 int t = a[i].size(); 53 if(tmp >= t - 1) 54 { 55 for (int j = 0; j < t; j ++) 56 { 57 printf("1 %d\n", a[i][j]); 58 } 59 tmp -= t - 1; 60 } 61 else 62 { 63 if(tmp) 64 { 65 for (int j = 0; j < tmp; j ++) 66 { 67 printf("1 %d\n", a[i][j]); 68 69 } 70 printf("%d ", t - tmp); 71 for (int j = tmp; j < t; j ++) 72 { 73 printf("%d ", a[i][j]); 74 } 75 puts(""); 76 tmp = 0; 77 } 78 else 79 { 80 81 82 printf("%d ", t); 83 for (int j = 0; j <t; j ++) 84 { 85 printf("%d ", a[i][j]); 86 } 87 puts(""); 88 89 } 90 } 91 } 92 }
E - Road to 1600(待補)
F - Kate and imperfection
給[1,n]的連續天然數。對[2,n]的每一個k,都枚舉全部大小剛好爲k的子集,而後定義一個值爲f,其遍歷集合中全部的二元組,求出二元組的gcd,而後取這些gcd裏面的最大值,求f的最小值。ci
第一眼看到這個東西的時候一點思路都沒有,後來看了大佬們的思路,發現是真的很神奇,對於每個數(不管質數合數)x,都有一個最小質因子*一個數,那麼咱們就貪心,給n個數排序,確定是讓最小質因子慢慢增大(1,1, 1, 2, 2,...3,),纔會讓f的最大值最小。
那麼根據歐拉篩每一個合子都是被其最小質因子篩的。就能夠在o(n) + o(nlogn)的狀況下獲得答案。
![](http://static.javashuo.com/static/loading.gif)
![](http://static.javashuo.com/static/loading.gif)
1 #include<iostream> 2 #include<cstdio> 3 #include<cstdlib> 4 #include<cstring> 5 #include<algorithm> 6 #include<cmath> 7 #include<vector> 8 #include<set> 9 10 using namespace std; 11 12 int read() 13 { 14 char c; 15 while (c = getchar(), c != '-' && (c < '0' || c > '9')); 16 bool flag = (c == '-'); 17 if (flag) 18 c = getchar(); 19 int x = 0; 20 while (c >= '0' && c <= '9') { 21 x = x * 10 + c - '0'; 22 c = getchar(); 23 } 24 return flag ? -x : x; 25 } 26 27 const int MAXN = 500000; 28 29 bool flag[MAXN + 1]; 30 int prime[MAXN], x[MAXN + 1]; 31 32 33 int main() { 34 int n = read(); 35 int total = 0; 36 x[1] = 1; 37 for (int i = 2; i <= n; i++) 38 { 39 if (!flag[i]) 40 { 41 prime[total++] = i; 42 x[i] = 1; 43 } 44 for (int j = 0; j < total && i * prime[j] <= n; j++) { 45 int k = i * prime[j]; 46 flag[k] = true; 47 x[k] = i; 48 if (!(i % prime[j])) 49 break; 50 } 51 } 52 sort(x + 1, x + (n + 1)); 53 for (int i = 2; i <= n; i++) 54 printf("%d%c", x[i], (i == n) ? '\n' : ' '); 55 return 0; 56 }