LeetCode 931. Minimum Falling Path Sum

原題連接在這裏:https://leetcode.com/problems/minimum-falling-path-sum/this

題目:spa

Given a square array of integers A, we want the minimum sum of a falling path through A.code

A falling path starts at any element in the first row, and chooses one element from each row.  The next row's choice must be in a column that is different from the previous row's column by at most one.blog

Example 1:element

Input: [[1,2,3],[4,5,6],[7,8,9]]
Output: 12 Explanation: The possible falling paths are: 
  • [1,4,7], [1,4,8], [1,5,7], [1,5,8], [1,5,9]
  • [2,4,7], [2,4,8], [2,5,7], [2,5,8], [2,5,9], [2,6,8], [2,6,9]
  • [3,5,7], [3,5,8], [3,5,9], [3,6,8], [3,6,9]

The falling path with the smallest sum is [1,4,7], so the answer is 12.leetcode

Note:get

  1. 1 <= A.length == A[0].length <= 100
  2. -100 <= A[i][j] <= 100

題解:input

For each cell A[i][j], the minimum falling path sum ending at this cell = A[i][j]+ Min(minimum sum ending on its upper left, minimum sum ending on its upper, minimum sum ending on it upper right).it

Could use dp to cash previous value.io

Time Complexity: O(m*n). m = A.length. n = A[0].length.

Space: O(m*n).

AC Java:

 1 class Solution {
 2     public int minFallingPathSum(int[][] A) {
 3         if(A == null || A.length == 0 || A[0].length == 0){
 4             return 0;
 5         }
 6         
 7         int res = Integer.MAX_VALUE;
 8         int m = A.length;
 9         int n = A[0].length;
10         int [][] dp = new int[m+1][n];
11         
12         for(int i = 1; i<=m; i++){
13             for(int j = 0; j<n; j++){
14                 int leftUp = j==0 ? dp[i-1][j] : dp[i-1][j-1];
15                 int rightUp = j == n-1 ? dp[i-1][j] : dp[i-1][j+1];
16                 dp[i][j] = A[i-1][j] + Math.min(leftUp, Math.min(dp[i-1][j], rightUp));
17                 if(i == m){
18                     res = Math.min(res, dp[i][j]);
19                 }
20             }
21         }
22         
23         return res;
24     }
25 }

Could operate on original A.

Time Complexity: O(m*n).

Space: O(1).

AC Java:

 1 class Solution {
 2     public int minFallingPathSum(int[][] A) {
 3         if(A == null || A.length == 0 || A[0].length == 0){
 4             return 0;
 5         }
 6         
 7         int res = Integer.MAX_VALUE;
 8         int m = A.length;
 9         int n = A[0].length;
10         
11         if(m == 1){
12             for(int j = 0; j<n; j++){
13                 res = Math.min(res, A[0][j]);
14             }
15             
16             return res;
17         }
18         
19         for(int i = 1; i<m; i++){
20             for(int j = 0; j<n; j++){
21                 int leftUp = j==0 ? A[i-1][j] : A[i-1][j-1];
22                 int rightUp = j == n-1 ? A[i-1][j] : A[i-1][j+1];
23                 A[i][j] += Math.min(leftUp, Math.min(A[i-1][j], rightUp));
24                 if(i == m-1){
25                     res = Math.min(res, A[i][j]);
26                 }
27             }
28         }
29         
30         return res;
31     }
32 }
相關文章
相關標籤/搜索