import numpy as np import caffe import os f = open('/home/python_code/result.txt', 'wr') caffe.set_mode_gpu() net = caffe.Net('/home/python_code/caffe_predict/deploy.prototxt', '/home/python_code/caffe_predict/gendernet.caffemodel', caffe.TEST) transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) transformer.set_mean('data', np.load('ilsvrc_2012_mean.npy').mean(1).mean(1)) transformer.set_transpose('data', (2,0,1)) transformer.set_channel_swap('data', (2,1,0)) transformer.set_raw_scale('data', 255.0) for dirpath,dirnames,filenames in os.walk('/home/pedestrian/TEST/IMAGES_TEST'): filenames.sort() for name in filenames: im = caffe.io.load_image(name) transformed_image = transformer.preprocess('data', im) net.blobs['data'].data[...] = transformed_image output = net.forward() result = output['prob'][0].argmax() context = str(result) + '\n' f.write(context) print 'finish ' + name f.close()