centos 7.2 spark 2.3.3 scala 2.11.11 java 1.8.0_202-eajava
spark-shell中爲scala語法格式es6
1.distinct 去重shell
val c = sc.parallerlize(List("Gnu","Cat","Rat","Dog","Gnu","Rat"),2) 初始化rdd,將數據均勻加載到2個partition中apache
c.distinct.collectcentos
>>res1: Array[String]=Array(Dog,Gnu,Cat,Rat)app
2. c.fisrt ide
first取RDD第一個Partition中的第一個記錄函數
>>res2:String = Gnu es5
3.filter 過濾spa
val a = sc.parallelize(1 to 10,3)
val b = a.filter(_ % 2 ==0)
b.collect
>>res3:Array[Int] = Array(2,4,6,8,10)
4.filterByRange 返回指定範圍內RDD記錄,只能做用於排序RDD
val randRDD = sc.parallelize(List((2,"cat"),(6,"mouse"),(7,"cup),(3,"book"),(4,"tv"),(1,"screen"),(5,"heater")),3)
val sortedRDD = randRDD.sortByKey()
sortRDD.filterByRange(1,3).collect
>>res4:Array[(Int,String)] = Array((1,screen),(2,cat),(3,book))
5.foreach 遍歷RDD內每一個記錄
val c = sc.parallelize(List("cat","dog","tiger","lion","gnu"),3)
c.foreach(x => println(x + "is ym"))
>>lion is ym
gnu is ym
cat is ym
tiger is ym
dog is ym
6.foreachPartition 遍歷RDD內每個Partition(每一個Partition對應一個值)
val b = sc.parallelize(List(1,2,3,4,5,6,7,8),3)
b.foreachPartition(x => println(x.reduce(_ + _ )))
>> 6
15
15
7.fullOuterJoin
rdd1.fullOuterJoin[rdd2] 對兩個PairRDD進行外鏈接 ,相同的key值的所有value組合,沒有相同key的也保留,值用None填充
val pairRDD1 = sc.parallelize(List(("cat",2),("cat",5),("book",40)))
val pairRDD2 = sc.parallelize(List(("cat",2),("cup",5),("book",40)))
pairRDD1.fullOuterJoin(pairRDD2).collect
>>res5: Array[(String,(Option[Int],Option[Int]))] = Array((book,(Some(40),Some(40))), (cup,(None,Some(5))), (cat,(Some(2),Some(2))), (cat,(Some(5),Some(2)))
8.groupBy 根據給定的規則 來分組
val a = sc.parallelize(1 to 9,3)
a.groupBy(x => {if (x % 2 == 0) "even" else "odd" }).collect
>> res6:Array[(String,Seq[Int])] = Array((even,ArrayBuffer(2,4,6,8)),(odd,ArrayBuffer(1,3,5,7,9)))
groupBy中使用的方法函數寫法還可寫做:
def myfunc(a:Int):Int =
{
a % 2
}
a.groupBy(myfunc).collect
或
def myfunc(a:Int):Int=
{
a % 2
}
a.groupBy(x => myfunc(x),3).collect
a.groupBy(myfunc(_),1).collect
例 將groupBy的條件設置爲 partition ,同時自定義數據分區的規則
package sometest import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
object SparkApplication{
def main(args:Array[String]){
val conf = new SparkConf()
val sc = new SparkContext(conf).setAppName("GroupPartition").setMaster("spark://master:7077")
val a = sc.parallelize(1 to 9 , 3)
val p = new MyPartitioner()
val b = a.groupBy((x:Int) => {x},p) //這裏按照自定義分區規則P從新分區,而後groupBy
// b的形式爲RDD[(Int,Iterable[Int])] 好比說 (1,CompactBuffer(1))
def myfunc(index:Int,iter:Iterator[(Int,Iterable[Int])]): Iterator[(Int,(Iterable[Int],Int))] = {
iter.map(a => (index,(a._2,a._1))) //a._2這種寫法表示a中的第2個元素
}
val c = b.mapPartitionsWithIndex(myfunc)
println("This is Result for My :")
c.collect().foreach(println)
}
自定義分區規則
package sometest
import org.apache.spark.Partitioner
/**
*自定義數據分區規則
**/
class MyPartitioner extends Partitioner{
def numPartitions:Int = 2 //設置分區數
def getPartition(key:Any):Int =
{
val code = key match
{
case null => 0
case key:Int => key % numPartitions //取餘
case _ => key.hashCode % numPartitions
}
if(code < 0 ){ // 對 hashCode爲負數的結果進行處理
code + numPartitions
}
else{
code
}
}
override def equals(other:Any):Boolean = // java標準的判斷相等的函數, Spark內部比較兩個RDD的分區是否同樣時 會用到這個這個函數
{
other match
{
case h:MyPartitioner => h.numPartitions == numPartitions
case _ => false
}
}
}
打包成sparkAction.jar後 使用命令執行 spark-submit --class sometest.SparkApplication ~/sparkAction.jar
輸出結果爲:
This is Result for My :
(0,(CompactBuffer(4),4))
( 0,( CompactBuffer(6),6))
( 0,( CompactBuffer(8),8))
( 0,( CompactBuffer(2),2))
( 0,( CompactBuffer(1),1))
( 0,( CompactBuffer(3),3))
( 0,( CompactBuffer(7),7))
( 0,( CompactBuffer(9),9))
( 0,( CompactBuffer(5),5))
9.groupByKey [Pair]
相似於groupBy ,不過函數做用於key,而groupBy的函數是做用於每一個數據的
val a = sc.parallelize(List("dog","tiger","lion","cat","spider","eagle"),2)
val b = a.keyBy(_.length)
b.groupByKey.collect
輸出res11:Array[(Int,Iterable[String])] = Array((4,CompactBuffer(lion)),(6,CompactBuffer(spider)),(3,CompactBuffer(dog,cat)),(5,CompactBuffer(tiger,eagle)))
10 .histogram[Double] 計算數據直方圖 (數值數據分佈的精確圖形表示)
計算給定數據中的最大值和最小值 ,而後將這個範圍段平均分紅n組,統計給定數據中每組的頻數
通常來講,範圍段爲橫軸 ,各組的統計個數爲縱座標
val a = sc.parallelize(List(1.1,1.2,1.3,2.0,2.1,7.4,7.5,7.6,8.8,9.0),3)
a.histogram(5) //將樣本數據分紅 5 組
res11: (Array[Double],Array[Long]) = (Array(1.1,2.68,4.26,5.84,7.42,9.0),Array(5,0,0,1,4))
11 .intersection 返回兩個RDD的交集(內鏈接)
val x=sc.parallelize(1 to 20)
val y =sc.parallelize(10 to 30)
val z = x.intersection(y)
z.collect
res74: Array[Int] = Array(16,17,18,10,19,11,20,12,13,14,15)
內鏈接
val a = sc.parallelize(List("dog","salmon","salmon","rat","elephant"),3)
val b = a.keyBy(_.length) //Array[(Int,String)]=Array((3,dog),(3,rat),(6,salmon),(6(salmon),(8,elephant))
val c = sc.parallelize(List("dog","cat","gnu","salmon","rabbit","turkey","wolf",bear","bee"),3)
val d = c.keyBy(_.length)
b.join(d).collect
輸出 res0: Array[(Int,(String,String))] = Array((6,(salmon,salmon)), (6,(salmon,rabbit)),(6,(salmon.turkey)), (6,(salmon,salmon)),
(6,(salmon,rabbit)), (6,(salmon,turkey)), (3,(dog,dog)), (3,(dog,cat)), (3,(dog,gnu)) ,(3,(dog,bee)), (3,(rat,dog)),(3,(rat,cat)), (3,(rat,gnu)), (,(rat,bee)))
12 .keys[Pair] 返回 key,value列表中的全部key
val a = sc.parallelize(List((3,"dog"),(5,"tiger"),(4,"lion"),(3,"cat"),(7,"panther"),(5,"eagle")),2)
a.keys.collect
res2: Array[Int] = Array(3,5,4,3,7,5)
13 . lookup 查找指定記錄
val a = sc.parallelize(List((3,"dog"),(5,"tiger"),(4,"lion"),(3,"cat"),,(7,"panther"),(5,"eagle")),2)
a.lookup(5)
res8: Seq[String] = WrappedArray(tiger,eagle)
14 .max 返回最大值
借用上述的a
a.max
res9: (Int,String) = (7,panther)
val y =sc.parallelize(10 to 30)
y.max
res10: Int = 30
15 . mean 平均值
y.mean
res13: Double = 20.0
16 . persist,cache 設置RDD的存儲級別
val c = sc.parallelize(List("Gnu","Cat","Rat","Dog","Gnu","Rat"),2)
c.getStorageLevel
res14: org.apache.spark.storage.StorageLevel = StorageLevel(1 replicas)
c.cache
res15: c.type = ParallelCollectionRDD[41] at parallelize at <console>:24
c.getStorageLevel
res16:org.apache.spark.storage.StorageLevel = StorageLevel(memory, deserialized, 1 replicas)
17 . sample 根據給定比例對數據進行採樣
sample(withReplacement, fraction, seed)withReplacement : 是否使用隨機數替換fraction : 對數據進行採樣的比例seed : 隨機數生成器種子val a = sc.parallelize(1 to 10000,3)a.sample(false,0.1,0).countres17:Long = 1032a.sample(true,0.3,0).countres18: Long = 3110 a.sample(true,0.3,13).countres20 : Long = 295218 .saveAsTextFile保存到文本數據 (默認 文件系統是hdfs)textFile讀取文本數據val a = sc.parallelize(11 to 19,3)a.saveAsTextFile("test/tf") //其實是保存到文件夾 test/tf ,因爲並行化因子爲3,一個Partition對應一個par-000xval b = sc.textFile("test/tf") b.collectres4: Array[String] = Array(11,12,13,14,15,16,17,18,19)19 .take 返回數據集中的前N個數據val b = sc.parallelize(List("dog","cat","ape","salmon","gnu"),2)b.take(2)res5: Array[String] = Array(dog,cat)20 .union,++ 對兩個RDD數據進行並集 ,合併兩個RDDval a = sc.parallelize( 1 to 5,1)val b = sc.parallelize(5 to 7,1)(a++b).collectArray[Int] = Array(1,2,3,4,5,5,6,7)