K8S集羣監控—cAdvisor+Heapster+InfluxDB+Grafana

  容器的監控方案有多種,如單臺docker主機的監控,能夠使用docker stats或者cAdvisor web頁面進行監控。但針對於Kubernetes這種容器編排工具而言docker單主機的監控已經不足以知足需求,在Kubernetes的生態圈中也誕生了一個個監控方案,如經常使用的dashboard,部署cAdvisor+Heapster+InfluxDB+Grafana監控方案,部署Prometheus和Grafana監控方案等。在這裏主要講述一下cAdvisor+Heapster監控方案。前端

  # docker stats
node

  圖片.png

  Google的 cAdvisor 是另外一個知名的開源容器監控工具,cAdvisor是docker容器建立後自動起的一個容器進程,用戶能夠經過Web界面訪問當前節點和容器的性能數據(CPU、內存、網絡、磁盤、文件系統等等),很是詳細。cAdvisor能夠直接經過訪問docker主機的4194端口訪問。git

  圖片.png

 

1、集羣監控原理
github

  cAdvisor:容器數據收集。
  Heapster:集羣監控數據收集,彙總全部節點監控數據。
  InfluxDB:時序數據庫,存儲監控數據。
  Grafana:可視化展現。web

  圖片.png 

  由圖可知,cAdvisor用於獲取k8s node節點上的容器數據,內存,CPU,Disk用量,網絡流量等,cAdvisor只支持實時存儲,不支持持久化存儲,由Heapster彙總全部節點的數據,交由InfluxDB來作持久化存儲,最後再由Grafana做爲前端的Web展現頁面來使用。docker


2、搭建cAdvisor+Heapster+InfluxDB+Grafana數據庫

①從官網上拉取安裝包api

獲取v1.5.2heapster+influxdb+grafana安裝yaml文件到 heapster release 頁面下載最新版本的 heapster:
# wget
https://github.com/kubernetes/heapster/archive/v1.5.2.zip
瀏覽器

# unzip v1.5.2.zip網絡

圖片.png

②修改yaml文件,如鏡像路徑(國外鏡像,不×××下載不了)

修改influxdb.yam並啓用

注意:數據庫須要最早啓用,後面收集到的數據才能保存

[root@node-1 monitor]# cat influxdb.yaml
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: monitoring-influxdb
  namespace: kube-system
spec:
  replicas: 1
  template:
    metadata:
      labels:
        task: monitoring
        k8s-app: influxdb
    spec:
      containers:
      - name: influxdb
        image: registry.cn-hangzhou.aliyuncs.com/google-containers/heapster-influxdb-amd64:v1.1.1
        volumeMounts:
        - mountPath: /data
          name: influxdb-storage
      volumes:
      - name: influxdb-storage
        emptyDir: {}

---
apiVersion: v1
kind: Service
metadata:
  labels:
    task: monitoring
    # For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
    # If you are NOT using this as an addon, you should comment out this line.
    kubernetes.io/cluster-service: 'true'
    kubernetes.io/name: monitoring-influxdb
  name: monitoring-influxdb
  namespace: kube-system
spec:
  type: NodePort
  ports:
  - nodePort: 31001
    port: 8086
    targetPort: 8086
  selector:
    k8s-app: influxdb


# kubectl create -f influxdb.yaml


修改heapster.yaml

[root@node-1 monitor]# cat heapster.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
  name: heapster
  namespace: kube-system

---

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: heapster
subjects:
  - kind: ServiceAccount
    name: heapster
    namespace: kube-system
roleRef:
  kind: ClusterRole
  name: cluster-admin
  apiGroup: rbac.authorization.k8s.io

---

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: heapster
  namespace: kube-system
spec:
  replicas: 1
  template:
    metadata:
      labels:
        task: monitoring
        k8s-app: heapster
    spec:
      serviceAccountName: heapster
      containers:
      - name: heapster
        image: registry.cn-hangzhou.aliyuncs.com/google-containers/heapster-amd64:v1.4.2
        imagePullPolicy: IfNotPresent
        command:
        - /heapster
        - --source=kubernetes:https://kubernetes.default
        - --sink=influxdb:http://monitoring-influxdb:8086

---

apiVersion: v1
kind: Service
metadata:
  labels:
    task: monitoring
    # For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
    # If you are NOT using this as an addon, you should comment out this line.
    kubernetes.io/cluster-service: 'true'
    kubernetes.io/name: Heapster
  name: heapster
  namespace: kube-system
spec:
  ports:
  - port: 80
    targetPort: 8082
  selector:
    k8s-app: heapster


# kubectl create -f heapster.yaml


修改grafana.yaml

[root@node-1 monitor]# cat grafana.yaml
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: monitoring-grafana
  namespace: kube-system
spec:
  replicas: 1
  template:
    metadata:
      labels:
        task: monitoring
        k8s-app: grafana
    spec:
      containers:
      - name: grafana
        image: registry.cn-hangzhou.aliyuncs.com/google-containers/heapster-grafana-amd64:v4.4.1
        ports:
        - containerPort: 3000
          protocol: TCP
        volumeMounts:
        - mountPath: /etc/ssl/certs
          name: ca-certificates
          readOnly: true
        - mountPath: /var
          name: grafana-storage
        env:
        - name: INFLUXDB_HOST
          value: monitoring-influxdb
        - name: GF_SERVER_HTTP_PORT
          value: "3000"
          # The following env variables are required to make Grafana accessible via
          # the kubernetes api-server proxy. On production clusters, we recommend
          # removing these env variables, setup auth for grafana, and expose the grafana
          # service using a LoadBalancer or a public IP.
        - name: GF_AUTH_BASIC_ENABLED
          value: "false"
        - name: GF_AUTH_ANONYMOUS_ENABLED
          value: "true"
        - name: GF_AUTH_ANONYMOUS_ORG_ROLE
          value: Admin
        - name: GF_SERVER_ROOT_URL
          # If you're only using the API Server proxy, set this value instead:
          # value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxy
          value: /
      volumes:
      - name: ca-certificates
        hostPath:
          path: /etc/ssl/certs
      - name: grafana-storage
        emptyDir: {}
---
apiVersion: v1
kind: Service
metadata:
  labels:
    # For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
    # If you are NOT using this as an addon, you should comment out this line.
    kubernetes.io/cluster-service: 'true'
    kubernetes.io/name: monitoring-grafana
  name: monitoring-grafana
  namespace: kube-system
spec:
  # In a production setup, we recommend accessing Grafana through an external Loadbalancer
  # or through a public IP.
  # type: LoadBalancer
  # You could also use NodePort to expose the service at a randomly-generated port
  # type: NodePort
  type: NodePort
  ports:
  - nodePort: 30108
    port: 80
    targetPort: 3000
  selector:
    k8s-app: grafana


# kubectl create -f grafana.yaml


瀏覽器訪問:

訪問grafana中指定的nodeport,看在那個node節點上

圖片.png

頁面訪問:

圖片.png

查看監控內容:

  Home選項下的Cluster是查看node節點的相關監控狀態

  Home選項下的Pods是查看由node節點收集來的相關namespace下的pod主機的監控內容

圖片.png


以下圖選定node主機節點,監控CPU,內存等狀態參數信息,能夠指定時間區間進行查看

圖片.png


以下圖選定namespaces下的指定pod,對該pod的狀態參數進行監控

圖片.png

相關文章
相關標籤/搜索