一、編寫UDF函數,來將原來建立的buck_ip_test表中的英文國籍轉換成中文java
iptest.txt文件內容:python
1 張三 192.168.1.1 china 2 李四 192.168.1.2 china 3 王五 192.168.1.3 china 4 makjon 192.168.1.4 china 1 aa 192.168.1.1 japan 2 bb 192.168.1.2 japan 3 cc 192.168.1.3 japan 4 makjon 192.168.1.4 japan
表數據截圖:sql
UdfTest.java代碼以下:apache
import java.util.HashMap; import org.apache.hadoop.hive.ql.exec.UDF; public class UdfTest extends UDF{ private static HashMap<String,String> countryMap = new HashMap(); static { countryMap.put("china", "中國"); countryMap.put("japan", "日本"); } //此段代碼進行國家的轉換 public String evaluate(String str){ String country = countryMap.get(str); if(country ==null){ return "其餘"; }else{ return country; } } //在函數中能夠定義多個evaluate方法,進行重載 //此段代碼進行國家和IP的拼接,測試重載用 public String evaluate(String country,String ip){ return country+"_"+ip; } /* * *此段代碼用於測試上面編寫的方法是否正確 public static void main(String[] args) { UdfTest ut = new UdfTest(); // TODO Auto-generated method stub String aa = ut.evaluate("AAAAAA"); System.out.println(aa); } */ }
在eclipse測試無問題後,導出成utftest.jar並上傳到服務器的/opt目錄json
進入hive,執行: add jar /opt/udftest.jar; 將jar包導入到hive中 再執行create temporary function convert as 'UdfTest'; 建立convert方法 執行結果以下圖:
而後在Hive中進行查詢:服務器
select country,convert(country,ip),convert(country) from buck_ip_test;
執行結果以下圖:app
這樣一個簡單的udf就開發完成啦eclipse
二、Hive中使用udf對JSON進行處理ide
數據文件movie.txt內容以下:函數
{"movie":"2797","rate":"4","timeStamp":"978302039","uid":"1"} {"movie":"2321","rate":"3","timeStamp":"978302205","uid":"1"} {"movie":"720","rate":"3","timeStamp":"978300760","uid":"1"} {"movie":"1270","rate":"5","timeStamp":"978300055","uid":"1"} {"movie":"527","rate":"5","timeStamp":"978824195","uid":"1"} {"movie":"2340","rate":"3","timeStamp":"978300103","uid":"1"} {"movie":"48","rate":"5","timeStamp":"978824351","uid":"1"} {"movie":"1097","rate":"4","timeStamp":"978301953","uid":"1"} {"movie":"1721","rate":"4","timeStamp":"978300055","uid":"1"} {"movie":"1545","rate":"4","timeStamp":"978824139","uid":"1"}
將數據導入到hive中的rating表中:
create table rating(rate string); load data local inpath '/opt/movie.txt' overwrite into table rating; select * from rating;
結果以下圖:
在本例中咱們使用ObjectMapper來處理json的數據,
首先建立MovierateBean.java,代碼以下:
import java.sql.Timestamp; public class MovierateBean { private String movie; private String rate; private Timestamp timeStamp; private String uid; public String getMovie() { return movie; } public void setMovie(String movie) { this.movie = movie; } public String getRate() { return rate; } public void setRate(String rate) { this.rate = rate; } public Timestamp getTimeStamp() { return timeStamp; } public void setTimeStamp(Timestamp timeStamp) { this.timeStamp = timeStamp; } public String getUid() { return uid; } public void setUid(String uid) { this.uid = uid; } @Override public String toString() { // TODO Auto-generated method stub return movie+"\t"+rate+"\t"+timeStamp+"\t"+uid; } }
而後建立MovieJsonTest.java,代碼以下:
import org.apache.hadoop.hive.ql.exec.UDF; import org.codehaus.jackson.map.ObjectMapper; public class MovieJsonTest extends UDF { public String evaluate(String jsonline){ ObjectMapper om = new ObjectMapper(); try{ MovierateBean bean = om.readValue(jsonline,MovierateBean.class); return bean.toString(); }catch(Exception e){ return(jsonline); } } /* public static void main(String[] args){ MovieJsonTest mt = new MovieJsonTest(); String jsonline="{\"movie\":\"527\",\"rate\":\"5\",\"timeStamp\":\"978824195\",\"uid\":\"1\"}"; System.out.println(mt.evaluate(jsonline)); } */ }
將上述文件打包成movie.jar,並上傳到服務器的/opt目錄下,並執行以下代碼:
add jar /opt/movie.jar; create temporary function movie_convert as 'MovieJsonTest'; select movie_convert(rate) from rating;
執行結果以下:
能夠看到原來的json格式以及被解析成對應的字段了
三、Hive Transform簡單介紹
Hive的UDF、UDAF須要經過java語言編寫。Hive提供了另外一種方式,達到自定義UDF和UDAF的目的,但使用方法更簡單。這就是TRANSFORM。TRANSFORM語言支持經過多種語言,實現相似於UDF的功能。
Hive還提供了MAP和REDUCE這兩個關鍵字。但MAP和REDUCE通常可理解爲只是TRANSFORM的別名。並不表明通常是在map階段或者是在reduce階段調用。詳見官網說明。
咱們能夠使用以下的python腳本代替上面的UDF函數:
服務器端/opt/movie_trans.py腳本內容以下:
import sys import datetime import json for line in sys.stdin: #line='{"movie":"2797","rate":"4","timeStamp":"978302039","uid":"1"}' line = line.strip() hjson = json.loads(line) movie = hjson['movie'] rate = hjson['rate'] timeStamp = hjson['timeStamp'] uid = hjson['uid'] timeStamp = datetime.datetime.fromtimestamp(float(timeStamp)) print '\t'.join([movie, rate, str(timeStamp),uid])
在hive中執行以下腳本:
ADD FILE /opt/movie_trans.py; SELECT TRANSFORM (rate) USING 'python movie_trans.py' AS (movie,rate, timeStamp, uid) FROM rating;
執行結果以下圖:
能夠看到咱們使用transform實現了上述UDF實現的功能