Your language isn't broken, it's doing floating point math. Computers can only natively store integers, so they need some way of representing decimal numbers. This representation comes with some degree of inaccuracy. That's why, more often than not, .1 + .2 != .3
.javascript
It's actually pretty simple. When you have a base 10 system (like ours), it can only express fractions that use a prime factor of the base. The prime factors of 10 are 2 and 5. So 1/2, 1/4, 1/5, 1/8, and 1/10 can all be expressed cleanly because the denominators all use prime factors of 10. In contrast, 1/3, 1/6, and 1/7 are all repeating decimals because their denominators use a prime factor of 3 or 7. In binary (or base 2), the only prime factor is 2. So you can only express fractions cleanly which only contain 2 as a prime factor. In binary, 1/2, 1/4, 1/8 would all be expressed cleanly as decimals. While, 1/5 or 1/10 would be repeating decimals. So 0.1 and 0.2 (1/10 and 1/5) while clean decimals in a base 10 system, are repeating decimals in the base 2 system the computer is operating in. When you do math on these repeating decimals, you end up with leftovers which carry over when you convert the computer's base 2 (binary) number into a more human readable base 10 number.html
Below are some examples of sending .1 + .2
to standard output in a variety of languages.java
read more: | wikipedia | IEEE 754 | Stack Overflow | What Every Computer Scientist Should Know About Floating-Point Arithmeticpython
Language | Code | Result |
---|---|---|
ABAP | WRITE / CONV f( '.1' + '.2' ).And WRITE / CONV decfloat16( '.1' + '.2' ). |
0.30000000000000004ios And0.3git |
Ada | with Ada.Text_IO; use Ada.Text_IO; procedure Sum is A : Float := 0.1; B : Float := 0.2; C : Float := A + B; begin Put_Line(Float'Image(C)); Put_Line(Float'Image(0.1 + 0.2)); end Sum; |
3.00000E-01 |
APL | 0.1 + 0.2 |
0.30000000000000004golang |
AutoHotkey | MsgBox, % 0.1 + 0.2 |
0.300000web |
awk | echo | awk '{ print 0.1 + 0.2 }' |
0.3shell |
bc | 0.1 + 0.2 |
0.3 |
C | #include<stdio.h> int main(int argc, char** argv) { printf("%.17f\n", .1+.2); return 0; } |
0.30000000000000004 |
Clojure | (+ 0.1 0.2) |
0.30000000000000004 |
Clojure supports arbitrary precision and ratios. |
||
ColdFusion | <cfset foo = .1 + .2> <cfoutput>#foo#</cfoutput> |
0.3 |
Common Lisp | (+ .1 .2)And (+ 1/10 2/10)And (+ 0.1d0 0.2d0)And (- 1.2 1.0) |
0.3 And3/10 And0.30000000000000004d0 And0.20000005 |
CL’s spec doesn’t actually even require radix 2 floats (let alone specifically 32-bit singles and 64-bit doubles), but the high-performance implementations all seem to use IEEE floats with the usual sizes. This was tested on SBCL and ECL in particular. |
||
C++ | #include <iomanip> std::cout << std::setprecision(17) << 0.1 + 0.2 |
0.30000000000000004 |
Crystal | puts 0.1 + 0.2And puts 0.1_f32 + 0.2_f32 |
0.30000000000000004 And0.3 |
C# | Console.WriteLine("{0:R}", .1 + .2);And Console.WriteLine("{0:R}", .1m + .2m); |
0.30000000000000004 And0.3 |
C# has support for 128-bit decimal numbers, with 28-29 significant digits of precision. Their range, however, is smaller than that of both the single and double precision floating point types. Decimal literals are denoted with the |
||
D | import std.stdio; void main(string[] args) { writefln("%.17f", .1+.2); writefln("%.17f", .1f+.2f); writefln("%.17f", .1L+.2L); } |
0.29999999999999999 |
Dart | print(.1 + .2); |
0.30000000000000004 |
dc | 0.1 0.2 + p |
.3 |
Delphi XE5 | writeln(0.1 + 0.2); |
3.00000000000000E-0001 |
Elixir | IO.puts(0.1 + 0.2) |
0.30000000000000004 |
Elm | 0.1 + 0.2 |
0.30000000000000004 |
elvish | + .1 .2 |
0.30000000000000004 |
elvish uses Go’s |
||
Emacs Lisp | (+ .1 .2) |
0.30000000000000004 |
Erlang | io:format("~w~n", [0.1 + 0.2]). |
0.30000000000000004 |
FORTRAN | program FLOATMATHTEST real(kind=4) :: x4, y4 real(kind=8) :: x8, y8 real(kind=16) :: x16, y16 ! REAL literals are single precision, use _8 or _16 ! if the literal should be wider. x4 = .1; x8 = .1_8; x16 = .1_16 y4 = .2; y8 = .2_8; y16 = .2_16 write (*,*) x4 + y4, x8 + y8, x16 + y16 end |
0.300000012 |
Gforth | 0.1e 0.2e f+ f. |
0.3 |
GHC (Haskell) | * 0.1 + 0.2 :: DoubleAnd * 0.1 + 0.2 :: Float |
|
Haskell supports rational numbers. To get the math right, |
||
Go | package main import "fmt" func main() { fmt.Println(.1 + .2) var a float64 = .1 var b float64 = .2 fmt.Println(a + b) fmt.Printf("%.54f\n", .1 + .2) } |
0.3 |
Groovy | println 0.1 + 0.2 |
0.3 |
Literal decimal values in Groovy are instances of java.math.BigDecimal |
||
Hugs (Haskell) | 0.1 + 0.2 |
0.3 |
Io | (0.1 + 0.2) print |
0.3 |
Java | System.out.println(.1 + .2);And System.out.println(.1F + .2F); |
0.30000000000000004 And0.3 |
Java has built-in support for arbitrary precision numbers using the BigDecimal class. |
||
JavaScript | console.log(.1 + .2); |
0.30000000000000004 |
The decimal.js library provides an arbitrary-precision Decimal type for JavaScript. |
||
Julia | .1 + .2 |
0.30000000000000004 |
Julia has built-in rational numbers support and also a built-in arbitrary-precision BigFloat data type. To get the math right, |
||
K (Kona) | 0.1 + 0.2 |
0.3 |
Lua | print(.1 + .2)And print(string.format("%0.17f", 0.1 + 0.2)) |
0.3 And0.30000000000000004 |
Mathematica | 0.1 + 0.2 |
0.3 |
Mathematica has a fairly thorough internal mechanism for dealing with numerical precision and supports arbitrary precision. |
||
Matlab | 0.1 + 0.2And sprintf('%.17f',0.1+0.2) |
0.3 And0.30000000000000004 |
MySQL | SELECT .1 + .2; |
0.3 |
Nim | echo(0.1 + 0.2) |
0.3 |
Objective-C | #import <Foundation/Foundation.h> int main(int argc, const char * argv[]) { @autoreleasepool { NSLog(@"%.17f\n", .1+.2); } return 0; } |
0.30000000000000004 |
OCaml | 0.1 +. 0.2;; |
float = 0.300000000000000044 |
Perl 5 | perl -E 'say 0.1+0.2'And perl -e 'printf q{%.17f}, 0.1+0.2' |
0.3 And0.30000000000000004 |
Perl 6 | perl6 -e 'say 0.1+0.2'And perl6 -e 'say (0.1+0.2).base(10, 17)'And perl6 -e 'say 1/10+2/10'And perl6 -e 'say (0.1.Num + 0.2.Num).base(10, 17)' |
0.3 And0.3 And0.3 And0.30000000000000004 |
Perl 6, unlike Perl 5, uses rationals by default, so .1 is stored something like { numerator => 1, denominator => 10 }. To actually trigger the behavior, you must force the numbers to be of type Num (double in C terms) and use the base function instead of the sprintf or fmt functions (since those functions have a bug that limits the precision of the output). |
||
PHP | echo .1 + .2; var_dump(.1 + .2); |
0.3 float(0.30000000000000004441) |
PHP |
||
PicoLisp | [load "frac.min.l"] # https://gist.github.com/6016d743c4c124a1c04fc12accf7ef17And [println (+ (/ 1 10) (/ 2 10))] |
(/ 3 10) |
You must load file 「frac.min.l」. |
||
Postgres | SELECT select 0.1::float + 0.2::float; |
0.3 |
Powershell | PS C:\>0.1 + 0.2 |
0.3 |
Prolog (SWI-Prolog) | ?- X is 0.1 + 0.2. |
X = 0.30000000000000004. |
Pyret | 0.1 + 0.2And ~0.1 + ~0.2 |
0.3 And~0.30000000000000004 |
Pyret has built-in support for both rational numbers and floating points. Numbers written normally are assumed to be exact. In contrast, RoughNums are represented by floating points, and are written with a |
||
Python 2 | print(.1 + .2)And .1 + .2And float(decimal.Decimal(".1") + decimal.Decimal(".2"))And float(fractions.Fraction('0.1') + fractions.Fraction('0.2')) |
0.3 And0.30000000000000004 And0.3 And0.3 |
Python 2’s 「print」 statement converts 0.30000000000000004 to a string and shortens it to 「0.3」. To achieve the desired floating point result, use print(repr(.1 + .2)). This was fixed in Python 3 (see below). |
||
Python 3 | print(.1 + .2)And .1 + .2And float(decimal.Decimal('.1') + decimal.Decimal('.2'))And float(fractions.Fraction('0.1') + fractions.Fraction('0.2')) |
0.30000000000000004 And0.30000000000000004 And0.3 And0.3 |
Python (both 2 and 3) supports decimal arithmetic with the decimal module, and true rational numbers with the fractions module. |
||
R | print(.1+.2)And print(.1+.2, digits=18) |
0.3 And0.30000000000000004 |
Racket (PLT Scheme) | (+ .1 .2)And (+ 1/10 2/10) |
0.30000000000000004 And3/10 |
Ruby | puts 0.1 + 0.2And puts 1/10r + 2/10r |
0.30000000000000004 And3/10 |
Ruby supports rational numbers in syntax with version 2.1 and newer directly. For older versions use Rational. |
||
Rust | extern crate num; use num::rational::Ratio; fn main() { println!("{}", 0.1 + 0.2); println!("1/10 + 2/10 = {}", Ratio::new(1, 10) + Ratio::new(2, 10)); } |
0.30000000000000004 And1/10 + 2/10 = 3/10 |
Rust has rational number support from the num crate. |
||
SageMath | .1 + .2And RDF(.1) + RDF(.2)And RBF('.1') + RBF('.2')And QQ('1/10') + QQ('2/10') |
0.3 And0.30000000000000004 And[「0.300000000000000 +/- 1.64e-16」] And3/10 |
SageMath supports various fields for arithmetic: Arbitrary Precision Real Numbers, RealDoubleField, Ball Arithmetic, Rational Numbers, etc. |
||
scala | scala -e 'println(0.1 + 0.2)'And scala -e 'println(0.1F + 0.2F)'And scala -e 'println(BigDecimal("0.1") + BigDecimal("0.2"))' |
0.30000000000000004 And0.3 And0.3 |
Smalltalk | 0.1 + 0.2. |
0.30000000000000004 |
Swift | 0.1 + 0.2And NSString(format: "%.17f", 0.1 + 0.2) |
0.3 And0.30000000000000004 |
TCL | puts [expr .1 + .2] |
0.30000000000000004 |
Turbo Pascal 7.0 | writeln(0.1 + 0.2); |
3.0000000000E-01 |
Vala | static int main(string[] args) { stdout.printf("%.17f\n", 0.1 + 0.2); return 0; } |
0.30000000000000004 |
Visual Basic 6 | a# = 0.1 + 0.2: b# = 0.3 Debug.Print Format(a - b, "0." & String(16, "0")) Debug.Print a = b |
0.0000000000000001 |
Appending the identifier type character |
||
WebAssembly (WAST) | (func $add_f32 (result f32) f32.const 0.1 f32.const 0.2 f32.add) (export "add_f32" (func $add_f32))And (func $add_f64 (result f64) f64.const 0.1 f64.const 0.2 f64.add) (export "add_f64" (func $add_f64)) |
0.30000001192092896 And0.30000000000000004 |
https://webassembly.studio/?f=r739k6d6q4t |
||
zsh | echo "$((.1+.2))" |
0.30000000000000004 |
I am Erik Wiffin. You can contact me at: erik.wiffin.com or erik.wiffin@gmail.com.
This project is on github. If you think this page could be improved, send me a pull request.