因爲許多潛在的Pandas用戶對SQL有必定的瞭解,所以本文章旨在提供一些如何使用Pandas執行各類SQL操做的示例。python
文件:tips.csv -sql
total_bill,tip,sex,smoker,day,time,size 0,16.99,1.01,Female,No,Sun,Dinner,2 1,10.34,1.66,Male,No,Sun,Dinner,3 2,21.01,3.50,Male,No,Sun,Dinner,3 3,23.68,3.31,Male,No,Sun,Dinner,2 4,24.59,3.61,Female,No,Sun,Dinner,4
import pandas as pd url = 'tips.csv' tips=pd.read_csv(url) print (tips.head())
輸出結果:shell
total_bill tip sex smoker day time size 0 16.99 1.01 Female No Sun Dinner 2 1 10.34 1.66 Male No Sun Dinner 3 2 21.01 3.50 Male No Sun Dinner 3 3 23.68 3.31 Male No Sun Dinner 2 4 24.59 3.61 Female No Sun Dinner 4
在SQL中,選擇是使用逗號分隔的列列表(或選擇全部列)來完成的,例如 -數據庫
SELECT total_bill, tip, smoker, time
FROM tips
LIMIT 5;
在Pandas中,列的選擇是經過傳遞列名到DataFrame -url
tips[['total_bill', 'tip', 'smoker', 'time']].head(5)
完整的程序 -spa
import pandas as pd url = 'tips.csv' tips=pd.read_csv(url) rs = tips[['total_bill', 'tip', 'smoker', 'time']].head(5) print(rs)
輸出結果:code
total_bill tip smoker time 0 16.99 1.01 No Dinner 1 10.34 1.66 No Dinner 2 21.01 3.50 No Dinner 3 23.68 3.31 No Dinner 4 24.59 3.61 No Dinner
調用沒有列名稱列表的DataFrame將顯示全部列(相似於SQL的*
)。對象
SELECT * FROM tips WHERE time = 'Dinner' LIMIT 5;
數據幀能夠經過多種方式進行過濾; 最直觀的是使用布爾索引。blog
tips[tips['time'] == 'Dinner'].head(5)
完整的程序
import pandas as pd url = 'tips.csv' tips=pd.read_csv(url) rs = tips[tips['time'] == 'Dinner'].head(5) print(rs)
輸出結果:索引
total_bill tip sex smoker day time size 0 16.99 1.01 Female No Sun Dinner 2 1 10.34 1.66 Male No Sun Dinner 3 2 21.01 3.50 Male No Sun Dinner 3 3 23.68 3.31 Male No Sun Dinner 2 4 24.59 3.61 Female No Sun Dinner 4
上述語句將一系列True/False
對象傳遞給DataFrame,並將全部行返回True
。
此操做將獲取整個數據集中每一個組的記錄數。 例如,一個查詢提取性別的數量(即,按性別分組) -
SELECT sex, count(*)
FROM tips
GROUP BY sex;
在Pandas中的等值語句將是 -
tips.groupby('sex').size()
完整的程序
import pandas as pd url = 'tips.csv' tips=pd.read_csv(url) rs = tips.groupby('sex').size() print(rs)
輸出結果:
sex Female 2 Male 3 dtype: int64
SQL(MySQL數據庫)使用LIMIT
返回前n
行
SELECT * FROM tips
LIMIT 5 ;
在Pandas中的等值語句將是
tips.head(5)
下面來看看完整的程序
import pandas as pd url = 'tips.csv' tips=pd.read_csv(url) rs = tips[['smoker', 'day', 'time']].head(5) print(rs)
輸出結果:
smoker day time 0 No Sun Dinner 1 No Sun Dinner 2 No Sun Dinner 3 No Sun Dinner 4 No Sun Dinner
這些是比較的幾個基本操做,在前幾章的Pandas庫中學到的。