elasticsearch安裝ik分詞器

1、概要:


1.es默認的分詞器對中文支持很差,會分割成一個個的漢字。ik分詞器對中文的支持要好一些,主要由兩種模式:ik_smart和ik_max_word
2.環境
操做系統:centos
es版本:6.0.0java

2、安裝插件


1.插件地址:https://github.com/medcl/elasticsearch-analysis-ik
2.運行命令行:git

./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.0.0/elasticsearch-analysis-ik-6.0.0.zip

運行完成後會發現多瞭如下文件:esroot 下的plugins和config文件夾多了analysis-ik目錄。github

3、重啓es


1.查找es進程centos

ps -ef | grep elastic

2.終止進程
從上面的結果能夠看到es進程號是12776.
執行命令:api

kill 12776

3.啓動es後臺運行elasticsearch

./bin/sh elastic search –d

提醒:重啓es會從新分片,線上環境要注意了。測試

4、測試


1.使用ik_max_word分詞spa

GET _analyze 
{ 
   "analyzer":"ik_max_word",
   "text":"中華人民共和國國歌"
}

分詞結果:操作系統

{
   "tokens": [
     {
       "token": "中華人民共和國",
       "start_offset": 0,
       "end_offset": 7,
       "type": "CN_WORD",
       "position": 0
     },
     {
       "token": "中華人民",
       "start_offset": 0,
       "end_offset": 4,
       "type": "CN_WORD",
       "position": 1
     },
     {
       "token": "中華",
       "start_offset": 0,
       "end_offset": 2,
       "type": "CN_WORD",
       "position": 2
     },
     {
       "token": "華人",
       "start_offset": 1,
       "end_offset": 3,
       "type": "CN_WORD",
       "position": 3
     },
     {
       "token": "人民共和國",
       "start_offset": 2,
       "end_offset": 7,
       "type": "CN_WORD",
       "position": 4
     },
     {
       "token": "人民",
       "start_offset": 2,
       "end_offset": 4,
       "type": "CN_WORD",
       "position": 5
     },
     {
       "token": "共和國",
       "start_offset": 4,
       "end_offset": 7,
       "type": "CN_WORD",
       "position": 6
     },
     {
       "token": "共和",
       "start_offset": 4,
       "end_offset": 6,
       "type": "CN_WORD",
       "position": 7
     },
     {
       "token": "",
       "start_offset": 6,
       "end_offset": 7,
       "type": "CN_CHAR",
       "position": 8
     },
     {
       "token": "國歌",
       "start_offset": 7,
       "end_offset": 9,
       "type": "CN_WORD",
       "position": 9
     }
   ]
}

 

2.使用ik_smart分詞插件

GET _analyze 
{ 
   "analyzer":"ik_smart",
   "text":"中華人民共和國國歌"
}

分詞結果:

{
   "tokens": [
     {
       "token": "中華人民共和國",
       "start_offset": 0,
       "end_offset": 7,
       "type": "CN_WORD",
       "position": 0
     },
     {
       "token": "國歌",
       "start_offset": 7,
       "end_offset": 9,
       "type": "CN_WORD",
       "position": 1
     }
   ]
}

5、java api分詞測試

1.調用ik_max_word分詞

@Test
public void analyzer_ik_max_word() throws Exception {
     java.lang.String text = "提早祝你們春節快樂!";

    TransportClient client = EsClient.get();
     AnalyzeRequest request = (new AnalyzeRequest()).analyzer("ik_max_word").text(text);
     List<AnalyzeResponse.AnalyzeToken> tokens = client.admin().indices().analyze(request).actionGet().getTokens();
     System.out.println(tokens.size());//6
     for (AnalyzeResponse.AnalyzeToken token : tokens) {
         System.out.println(token.getTerm() + " ");
     }
}

結果:

6
提早 
祝 
你們 
春節快樂 
春節 
快樂

2.調用ik_smart分詞

@Test
public void analyzer_ik_smart() throws Exception {
     java.lang.String text = "提早祝你們春節快樂!";

    TransportClient client = EsClient.get();
     AnalyzeRequest request = (new AnalyzeRequest()).analyzer("ik_smart").text(text);
     List<AnalyzeResponse.AnalyzeToken> tokens = client.admin().indices().analyze(request).actionGet().getTokens();
     System.out.println(tokens.size());
     for (AnalyzeResponse.AnalyzeToken token : tokens) {
         System.out.println(token.getTerm() + " ");
     }
}

結果:

4
提早 
祝 
你們 
春節快樂
相關文章
相關標籤/搜索