開源中文分詞工具探析(六):Stanford CoreNLP

CoreNLP是由斯坦福大學開源的一套Java NLP工具,提供諸如:詞性標註(part-of-speech (POS) tagger)、命名實體識別(named entity recognizer (NER))、情感分析(sentiment analysis)等功能。html


【開源中文分詞工具探析】系列:java

  1. 開源中文分詞工具探析(一):ICTCLAS (NLPIR)
  2. 開源中文分詞工具探析(二):Jieba
  3. 開源中文分詞工具探析(三):Ansj
  4. 開源中文分詞工具探析(四):THULAC
  5. 開源中文分詞工具探析(五):FNLP
  6. 開源中文分詞工具探析(六):Stanford CoreNLP
  7. 開源中文分詞工具探析(七):LTP

1. 前言

CoreNLP的中文分詞基於CRF模型:git

\[ P_w(y|x) = \frac{exp \left( \sum_i w_i f_i(x,y) \right)}{Z_w(x)} \]github

其中,\(Z_w(x)\)爲歸一化因子,\(w\)爲模型的參數,\(f_i(x,y)\)爲特徵函數。數組

2. 分解

如下源碼分析基於3.7.0版本,分詞示例見SegDemo類。dom

模型

主要模型文件有兩份,一份爲詞典文件dict-chris6.ser.gz函數

// dict-chris6.ser.gz 對應於長度爲7的Set數組詞典
// 共計詞數:0+7323+125336+142252+82139+26907+39243
ChineseDictionary::loadDictionary(String serializePath) {
    Set<String>[] dict = new HashSet[MAX_LEXICON_LENGTH + 1];
    for (int i = 0; i <= MAX_LEXICON_LENGTH; i++) {
        dict[i] = Generics.newHashSet();
    }
    dict = IOUtils.readObjectFromURLOrClasspathOrFileSystem(serializePath);
    return dict;
}

詞典的索引值爲詞的長度,好比第0個詞典中沒有詞,第1個詞典爲長度爲1的詞,第6個詞典爲長度爲6的詞。其中,第6個詞典爲半成詞,好比,有詞「《雙峯》(電」、「80年國家領」、「1824年英」。工具

另外一份爲CRF訓練模型文件ctb.gz源碼分析

CRFClassifier::loadClassifier(ObjectInputStream ois, Properties props) {
    Object o = ois.readObject();
    if (o instanceof List) {
        labelIndices = (List<Index<CRFLabel>>) o; // label索引
    }
    classIndex = (Index<String>) ois.readObject(); // 序列標註label
    featureIndex = (Index<String>) ois.readObject(); // 特徵
    flags = (SeqClassifierFlags) ois.readObject(); // 模型配置

    Object featureFactory = ois.readObject(); // 特徵模板,用於生成特徵
    else if (featureFactory instanceof FeatureFactory) {
        featureFactories = Generics.newArrayList();
        featureFactories.add((FeatureFactory<IN>) featureFactory);
    }

    windowSize = ois.readInt(); // 窗口大小爲2
    weights = (double[][]) ois.readObject(); // 特徵+label 對應的權重

    Set<String> lcWords = (Set<String>) ois.readObject(); // Set爲空
    else {
        knownLCWords = new MaxSizeConcurrentHashSet<>(lcWords);
    }

    reinit();
}

不一樣於其餘分詞器採用B、M、E、S四種label來作分詞,CoreNLP的中文分詞label只有兩種,「1」表示當前字符與前一字符鏈接成詞,「0」則表示當前字符爲另外一詞的開始——換言以前一字符爲上一個詞的結尾。測試

class CRFClassifier {
    classIndex: class edu.stanford.nlp.util.HashIndex
      ["1","0"]
}

// 中文分詞label對應的類
public static class AnswerAnnotation implements CoreAnnotation<String>{}

特徵

CoreNLP的特徵以下(示例):

class CRFClassifier {
    // 特徵
    featureIndex: class edu.stanford.nlp.util.HashIndex
        size = 3408491
        0=的膀cc2|C
        1=身也pc|C
        44=LSSLp2spscsc2s|C
        45=科背p2p|C
        46=迪。cc2|C
        ...
        =球-行pc2|CnC
        =音非cc2|CpC
    
    // 權重
    weights: double[3408491][2]
        [[2.2114868426005005E-5, -2.2114868091546352E-5]...]
}

特徵後綴只有3類:C, CpC, CnC,分別表明了三大類特徵;均由特徵模板生成:

// 特徵模板List
featureFactories: ArrayList<FeatureFactory>
    0 = Gale2007ChineseSegmenterFeatureFactory

// 具體特徵模板
Gale2007ChineseSegmenterFeatureFactory::getCliqueFeatures() {
    if (clique == cliqueC) {
        addAllInterningAndSuffixing(features, featuresC(cInfo, loc), "C");
    } else if (clique == cliqueCpC) {
        addAllInterningAndSuffixing(features, featuresCpC(cInfo, loc), "CpC");
        addAllInterningAndSuffixing(features, featuresCnC(cInfo, loc - 1), "CnC");
    }
}

特徵模板只用到了兩個特徵簇cliqueCcliqueCpC,其中,cliqueC由函數featuresC()實現,cliqueCpC由函數featuresCpC()featuresCnC()

Gale2007ChineseSegmenterFeatureFactory::featuresC() {
    if (flags.useWord1) {
        // Unigram 特徵
        features.add(charc +"::c"); // c[0]
        features.add(charc2+"::c2"); // c[1]
        features.add(charp +"::p"); // c[-1]
        features.add(charp2 +"::p2"); // c[-2]

        // Bigram 特徵
        features.add(charc +charc2  +"::cn"); // c[0]c[1]
        features.add(charc +charc3  +"::cn2"); // c[0]c[2]
        features.add(charp +charc  +"::pc"); // c[-1]c[0]
        features.add(charp +charc2  +"::pn"); // c[-1]c[1]
        features.add(charp2 +charp  +"::p2p"); // c[-2]c[-1]
        features.add(charp2 +charc  +"::p2c"); // c[-2]c[0]
        features.add(charc2 +charc  +"::n2c"); // c[1]c[0]
    }

    // 三個字符c[-1]c[0]c[1]對應的LBeginAnnotation、LMiddleAnnotation、LEndAnnotation 三種label特徵
    // 結果特徵分別以6種形式結尾,"-lb", "-lm", "-le", "-plb", "-plm", "-ple", "-c2lb", "-c2lm", "-c2le"
    // null || ".../models/segmenter/chinese/dict-chris6.ser.gz"
    if (flags.dictionary != null || flags.serializedDictionary != null) {
        dictionaryFeaturesC(CoreAnnotations.LBeginAnnotation.class,
                CoreAnnotations.LMiddleAnnotation.class,
                CoreAnnotations.LEndAnnotation.class,
                "", features, p, c, c2);
    }

    // 特徵 c[1]c[0], c[1]
    if (flags.useFeaturesC4gram || flags.useFeaturesC5gram || flags.useFeaturesC6gram) {
        features.add(charp2 + charp + "p2p");
        features.add(charp2 + "p2");
    }

    // Unicode特徵
    if (flags.useUnicodeType || flags.useUnicodeType4gram || flags.useUnicodeType5gram) {
        features.add(uTypep + "-" + uTypec + "-" + uTypec2 + "-uType3");
    }

    // UnicodeType特徵
    if (flags.useUnicodeType4gram || flags.useUnicodeType5gram) {
        features.add(uTypep2 + "-" + uTypep + "-" + uTypec + "-" + uTypec2 + "-uType4");
    }

    // UnicodeBlock特徵
    if (flags.useUnicodeBlock) {
        features.add(p.getString(CoreAnnotations.UBlockAnnotation.class) + "-"
                + c.getString(CoreAnnotations.UBlockAnnotation.class) + "-"
                + c2.getString(CoreAnnotations.UBlockAnnotation.class)
                + "-uBlock");
    }

    // Shape特徵
    if (flags.useShapeStrings) {
        if (flags.useShapeStrings1) {
            features.add(p.getString(CoreAnnotations.ShapeAnnotation.class) + "ps");
            features.add(c.getString(CoreAnnotations.ShapeAnnotation.class) + "cs");
            features.add(c2.getString(CoreAnnotations.ShapeAnnotation.class) + "c2s");
        }
        if (flags.useShapeStrings3) {
            features.add(p.getString(CoreAnnotations.ShapeAnnotation.class)
                    + c.getString(CoreAnnotations.ShapeAnnotation.class)
                    + c2.getString(CoreAnnotations.ShapeAnnotation.class)
                    + "pscsc2s");
        }
        if (flags.useShapeStrings4) {
            features.add(p2.getString(CoreAnnotations.ShapeAnnotation.class)
                    + p.getString(CoreAnnotations.ShapeAnnotation.class)
                    + c.getString(CoreAnnotations.ShapeAnnotation.class)
                    + c2.getString(CoreAnnotations.ShapeAnnotation.class)
                    + "p2spscsc2s");
        }
        if (flags.useShapeStrings5) {
            features.add(p2.getString(CoreAnnotations.ShapeAnnotation.class)
                    + p.getString(CoreAnnotations.ShapeAnnotation.class)
                    + c.getString(CoreAnnotations.ShapeAnnotation.class)
                    + c2.getString(CoreAnnotations.ShapeAnnotation.class)
                    + c3.getString(CoreAnnotations.ShapeAnnotation.class)
                    + "p2spscsc2sc3s");
        }
    }
}

Gale2007ChineseSegmenterFeatureFactory::featuresCpC() {}

Gale2007ChineseSegmenterFeatureFactory::featuresCnC() {}

三大類特徵分別以「|C」爲結尾(共計有32個)、以「|CpC」結尾(共計有37個)、以「|CnC」結尾(共計有9個);總計78個特徵。我的感受CoreNLP定義的特徵過於複雜,大部分特徵並無什麼用。CoreNLP後面處理流程跟其餘分詞器別無二樣了,求每一個label的權重加權之和,Viterbi解碼求解最大機率路徑,解析label序列獲得分詞結果。

CoreNLP分詞速度巨慢,效果也通常,在PKU、MSR測試集上的表現以下:

測試集 分詞器 準確率 召回率 F1
PKU thulac4j 0.948 0.936 0.942
CoreNLP 0.901 0.894 0.897
MSR thulac4j 0.866 0.896 0.881
CoreNLP 0.822 0.859 0.840

3.參考資料

[1] Huihsin, Tseng, et al. "A conditional random field word segmenter." Fourth SIGHAN Workshop. 2005. [2] Chang, Pi-Chuan, Michel Galley, and Christopher D. Manning. "Optimizing Chinese word segmentation for machine translation performance." Proceedings of the third workshop on statistical machine translation. Association for Computational Linguistics, 2008.

相關文章
相關標籤/搜索