iOS 引用計數 retainCount、retain、release 源碼分析+註釋+實驗

這篇文章與上一篇有較大的關聯,沒看過的能夠先去看看 ^ _ ^c++

對象alloc後retainCount爲何引用計數爲1

Person *p = [Person alloc]; // extrac = 0
        // alloc出來的引用計數爲多少 -- 0 -- 1
        NSLog(@"%lu",(unsigned long)[p retainCount]); // 1
        [p retain]; // extrac = 0  -  1
        NSLog(@"%lu",(unsigned long)[p retainCount]); // extrac+1 = 2
        [p release];// -1
        NSLog(@"1 == %lu",(unsigned long)[p retainCount]); // 1
        [p release];// 1-1 -- 引用計數位0的時候 我就析構 ? -- 響應 消息
        NSLog(@" 0 == %lu",(unsigned long)[p retainCount]); // 0
        [p release];// -1
        NSLog(@"-1 == %lu",(unsigned long)[p retainCount]); // -1
        NSLog(@"完了");
複製代碼

對象alloc的時候,最終會走向建立isa bash

image.png
並無進行retainCount,引用計數爲0,進行打印retainCount的時候因爲當前引用計數爲0,若是一直爲0,那麼對象就會被銷燬,致使咱們如今在作無用功,因此在 objc_object::rootRetainCount()中有判斷 if (bits.nonpointer) {},isa初始化的時候,nonpointer爲1,因此在調用retainCount時,會默認給該對象的引用計數+1。

inline uintptr_t 
objc_object::rootRetainCount()
{
    if (isTaggedPointer()) return (uintptr_t)this;

    sidetable_lock();
    isa_t bits = LoadExclusive(&isa.bits);
    
    ClearExclusive(&isa.bits);
    if (bits.nonpointer) {
        uintptr_t rc = 1 + bits.extra_rc;
        if (bits.has_sidetable_rc) {
            rc += sidetable_getExtraRC_nolock();
        }
        sidetable_unlock();
        return rc;
    }

    sidetable_unlock();
    return sidetable_retainCount();
}
複製代碼

retain & release

retain

執行順序 <1> - (id)retain {} <2> objc_object::rootRetain()參數分別:false,false <3> objc_object::rootRetain(bool tryRetain, bool handleOverflow) <4> 判斷新舊isa是否一致循環,一致就執行<9>,不然執行<5> <5> 循環獲取舊值,並賦給新值,爲新值進行extra_rc+1 <6> 判斷是否溢出(x86_64 256),沒溢出就執行<9>,溢出走<7> <7> 執行rootRetain_overflow,回到<3>,handleOverflow爲true,下次過來時執行<8> <8> x86_64留下引用計數的一半128,複製另外一半存進去散列表 <9> return架構

// 而且調用retain的時候,傳入的兩個參數均爲false
ALWAYS_INLINE id 
objc_object::rootRetain(bool tryRetain, bool handleOverflow)
{
    if (isTaggedPointer()) return (id)this;

    bool sideTableLocked = false;
    bool transcribeToSideTable = false;
    
    isa_t oldisa;
    isa_t newisa;

    
    // 循環條件:判斷是否獨一份存儲,對比新舊isa,若是不是,就循環
    do {
        transcribeToSideTable = false;
        oldisa = LoadExclusive(&isa.bits);
        newisa = oldisa;
        if (slowpath(!newisa.nonpointer)) {
            ClearExclusive(&isa.bits);
            if (!tryRetain && sideTableLocked) sidetable_unlock();
            if (tryRetain) return sidetable_tryRetain() ? (id)this : nil;
            else return sidetable_retain();
        }
        // don't check newisa.fast_rr; we already called any RR overrides // 若是當前對象的isa 正在銷燬 if (slowpath(tryRetain && newisa.deallocating)) { ClearExclusive(&isa.bits); if (!tryRetain && sideTableLocked) sidetable_unlock(); return nil; } //是否溢出, //通過實驗:在x86_64架構下,當newisa.extra_rc爲255時,在進行addc,就會發生溢出 //溢出以後,將會拿2的7次方的extra_rc 存到散列表中,newisa.extra_rc回到128 uintptr_t carry; //這裏newisa.extra_rc 會+1 RC_ONE newisa.bits = addc(newisa.bits, RC_ONE, 0, &carry); // extra_rc++ printf("%lu,",newisa.extra_rc); //newisa.extra_rc++若是溢出 if (slowpath(carry)) { // newisa.extra_rc++ overflowed //第一次來的話,handleOverflow是false,會進判斷語句 if (!handleOverflow) { ClearExclusive(&isa.bits); //這裏從新調用了當前方法rootRetain,可是handleOverflow = true return rootRetain_overflow(tryRetain); } // Leave half of the retain counts inline and // prepare to copy the other half to the side table. // retry以後會來到這裏 // 翻譯:留下內部關聯對象的一半,準備複製另外一半存進去散列表 if (!tryRetain && !sideTableLocked) { sidetable_lock(); } sideTableLocked = true; transcribeToSideTable = true; newisa.extra_rc = RC_HALF; newisa.has_sidetable_rc = true; } //當且僅當舊值與存儲中的當前值一致時,才把新值寫入存儲。 } while (slowpath(!StoreExclusive(&isa.bits, oldisa.bits, newisa.bits))); if (slowpath(transcribeToSideTable)) { // Copy the other half of the retain counts to the side table. // 拷貝一半(128)進散列表 sidetable_addExtraRC_nolock(RC_HALF); } if (slowpath(!tryRetain && sideTableLocked)) sidetable_unlock(); return (id)this; } 複製代碼
sidetable_addExtraRC_nolock散列表添加引用計數

這個在上一篇文章,內存管理方案中已經有提到過了,這裏在發一次,加點印象。ide

bool 
objc_object::sidetable_addExtraRC_nolock(size_t delta_rc)
{
    assert(isa.nonpointer);
    // 經過SideTables() 獲取SideTable
    SideTable& table = SideTables()[this];

    //獲取引用計數的size
    size_t& refcntStorage = table.refcnts[this];
    // 賦值給oldRefcnt
    size_t oldRefcnt = refcntStorage;
    // isa-side bits should not be set here
    assert((oldRefcnt & SIDE_TABLE_DEALLOCATING) == 0);
    assert((oldRefcnt & SIDE_TABLE_WEAKLY_REFERENCED) == 0);

    // 若是oldRefcnt & SIDE_TABLE_RC_PINNED = 1
    // 就是 oldRefcnt = 2147483648 (32位狀況)
    if (oldRefcnt & SIDE_TABLE_RC_PINNED) return true;
    
    //引用計數也溢出判斷參數
    uintptr_t carry;
    
    // 引用計數 add
    //delta_rc左移兩位,右邊的兩位分別是DEALLOCATING(銷燬ing) 跟WEAKLY_REFERENCED(弱引用計數)
    size_t newRefcnt = 
        addc(oldRefcnt, delta_rc << SIDE_TABLE_RC_SHIFT, 0, &carry);
    //若是sidetable也溢出了。
    //這裏我for了幾百萬次,也沒有溢出,可見sidetable能容納不少的引用計數
    if (carry) {
        // 若是是32位的狀況 SIDE_TABLE_RC_PINNED = 1<< (32-1)
        // int的最大值 SIDE_TABLE_RC_PINNED = 2147483648
        //  SIDE_TABLE_FLAG_MASK = 3
        // refcntStorage = 2147483648 | (oldRefcnt & 3)
        // 若是溢出,直接把refcntStorage 設置成最大值
        refcntStorage =
            SIDE_TABLE_RC_PINNED | (oldRefcnt & SIDE_TABLE_FLAG_MASK);
        return true;
    }
    else {
        refcntStorage = newRefcnt;
        return false;
    }
}
複製代碼
release

執行順序 <1> - (oneway void)release {} <2> objc_object::rootRelease() 參數分別:true,false <3> objc_object::rootRelease(bool performDealloc, bool handleUnderflow) <4> 判斷新舊isa是否一致循環,一致就執行return,不然執行<5> <5> 循環獲取舊值,並賦給新值,爲新值進行extra_rc-1 <6> 判斷是否溢出,沒溢出就執行return,溢出走<7> underflow <7> 判斷是否有用到散列表 <8> 從散列表中拿出RC_HALF,將這部分存進newisa <9> 存成功就return,不成功就重試,再不行就把拿出來的放回去,而後goto retry; <10> deallocui

ALWAYS_INLINE bool 
objc_object::rootRelease(bool performDealloc, bool handleUnderflow)
{
    if (isTaggedPointer()) return false;

    bool sideTableLocked = false;
    //新舊isa
    isa_t oldisa;
    isa_t newisa;

 retry:
    //跟retain同樣的判斷條件
    do {
        oldisa = LoadExclusive(&isa.bits);
        newisa = oldisa;
        if (slowpath(!newisa.nonpointer)) {
            ClearExclusive(&isa.bits);
            if (sideTableLocked) sidetable_unlock();
            return sidetable_release(performDealloc);
        }
        // don't check newisa.fast_rr; we already called any RR overrides uintptr_t carry; //newisa.extra_rc-1 //若是溢出的時候, newisa.extra_rc = 255 newisa.bits = subc(newisa.bits, RC_ONE, 0, &carry); // extra_rc-- if (slowpath(carry)) { // don't ClearExclusive()
            //若是溢出走這
            printf("釋放溢出了,underflow\n");
            goto underflow;
        }
    } while (slowpath(!StoreReleaseExclusive(&isa.bits, 
                                             oldisa.bits, newisa.bits)));

    if (slowpath(sideTableLocked)) sidetable_unlock();
    return false;

 underflow:
    // newisa.extra_rc-- underflowed: borrow from side table or deallocate

    // abandon newisa to undo the decrement
    // 從新把舊isa給新isa,意思是把引用計數-1操做還原
    // 這時候的 newisa.extra_rc = 0
    newisa = oldisa;
    // retain的時候。若是有用到散列表,會 newisa.has_sidetable_rc = true;
    if (slowpath(newisa.has_sidetable_rc)) {
        printf("發現has_sidetable_rc = true \n");
        // 調用release的時候handleUnderflow = false
        if (!handleUnderflow) {
            ClearExclusive(&isa.bits);
            //相似retain時候retry,從新來一次,可是handleUnderflow爲true
            return rootRelease_underflow(performDealloc);
        }

        // Transfer retain count from side table to inline storage.
        // 進判斷前 sideTableLocked 沒有從新賦值,因此一直是false
        if (!sideTableLocked) {
            ClearExclusive(&isa.bits);
            sidetable_lock();
            sideTableLocked = true;
            // Need to start over to avoid a race against 
            // the nonpointer -> raw pointer transition.
            // 去retry,從新回到上面,重複走一遍
            goto retry;
        }

        // Try to remove some retain counts from the side table.
        // 從散列表中拿出RC_HALF的引用計數
        size_t borrowed = sidetable_subExtraRC_nolock(RC_HALF);
        printf("借出來的 size === %lu \n",borrowed);
        // To avoid races, has_sidetable_rc must remain set 
        // even if the side table count is now zero.

        if (borrowed > 0) {
            // Side table retain count decreased.
            // Try to add them to the inline count.
            newisa.extra_rc = borrowed - 1;  // redo the original decrement too
            // 把拿出來的引用計數存到newisa
            bool stored = StoreReleaseExclusive(&isa.bits, 
                                                oldisa.bits, newisa.bits);
            if (!stored) {
                //若是沒存成功,就換個姿式再試試
                // Inline update failed. 
                // Try it again right now. This prevents livelock on LL/SC 
                // architectures where the side table access itself may have 
                // dropped the reservation.
                isa_t oldisa2 = LoadExclusive(&isa.bits);
                isa_t newisa2 = oldisa2;
                if (newisa2.nonpointer) {
                    uintptr_t overflow;
                    newisa2.bits = 
                        addc(newisa2.bits, RC_ONE * (borrowed-1), 0, &overflow);
                    if (!overflow) {
                        stored = StoreReleaseExclusive(&isa.bits, oldisa2.bits, 
                                                       newisa2.bits);
                    }
                }
            }

            if (!stored) {
                // 若是仍是沒成功,把拿出來的放回去
                // Inline update failed.
                // Put the retains back in the side table.
                sidetable_addExtraRC_nolock(borrowed);
                goto retry;
            }

            // Decrement successful after borrowing from side table.
            // This decrement cannot be the deallocating decrement - the side 
            // table lock and has_sidetable_rc bit ensure that if everyone 
            // else tried to -release while we worked, the last one would block.
            sidetable_unlock();
            return false;
        }
        else {
            // Side table is empty after all. Fall-through to the dealloc path.
        }
    }

    // Really deallocate.
    // 若是newisa.has_sidetable_rc != true;
    // 就拋錯,release太多
    if (slowpath(newisa.deallocating)) {
        ClearExclusive(&isa.bits);
        if (sideTableLocked) sidetable_unlock();
        return overrelease_error();
        // does not actually return
    }
    newisa.deallocating = true;
    if (!StoreExclusive(&isa.bits, oldisa.bits, newisa.bits)) goto retry;

    if (slowpath(sideTableLocked)) sidetable_unlock();

    __sync_synchronize();
    if (performDealloc) {
        ((void(*)(objc_object *, SEL))objc_msgSend)(this, SEL_dealloc);
    }
    return true;
}
複製代碼

###實驗: 在這個實驗中this

  1. 我先對p retain了257次,256次保證溢出,在第257次時觀察在已經使用到了sidetable的狀況下的引用計數。
  2. 而後再對p release了260次,保證能release次數大於retain次數,保證p dealloc,而且觀察在dealloc後,繼續release的狀況。
Person *p =[Person alloc]; // extrac = 0
        NSLog(@"開始retain\n");
        // 在Mac下 保證能retain溢出,並多retain一次
        for (int i = 0 ; i<257; i++) {
            [p retain];
        }
        NSLog(@"開始release\n");
        // 在Mac下 保證能release溢出,而且多釋放幾回
        for (int i = 0 ; i<260; i++) {
            [p release];
        }
複製代碼
  1. 而後我在源碼中各個位置都作了log處理,觀察進行lldb調試 spa

    retainlog標記.png
    releaselog標記.png

  2. 先看retain的log 翻譯

    image.png

  3. retain結論:在retain發生溢出後,會存入128到散列表,newisa的當前引用計數爲128,再繼續retain就在128的基礎上+1。3d

  4. 看release的log ,此時p的引用計數爲129(可是若是調用retainCount就會是130) 調試

    image.png

  5. release總結:

<1> 在release發生溢出,且當前newisa的has_sidetable_rc爲true後> <2> 走performDealloc,將handleUnderflow設置成true,而後再遞歸一次 <3> 過了handleUnderflow這關以後,繼續遇到了sideTableLocked <4> release的時候sideTableLocked默認爲false,把sideTableLocked設置爲true後,就又要回到retry(這裏應該不算遞歸),又走了一遍上面的一大串代碼。 <5> 可謂是過關斬將遇到兩個攔路虎handleUnderflow 、sideTableLocked,過了兩關後,從sidetable中拿出RC_HALF(2^7)的引用計數,-1 以後交給當前newisa.extra_rc。

TO BE CONTINUE ~

相關文章
相關標籤/搜索