python求職Top10城市,來看看是否有你所在的城市

前言

從智聯招聘爬取相關信息後,咱們關心的是如何對內容進行分析,獲取用用的信息。vue

本次以上篇文章「5分鐘掌握智聯招聘網站爬取並保存到MongoDB數據庫」中爬取的數據爲基礎,分析關鍵詞爲「python」的爬取數據的狀況,獲取包括全國python招聘數量Top10的城市列表以及其餘相關信息。python

1、主要分析步驟

  • 數據讀取
  • 數據整理
  • 對職位數量在全國主要城市的分佈狀況進行分析
  • 對全國範圍內的職位月薪狀況進行分析
  • 對該職位招聘崗位要求描述進行詞雲圖分析,獲取頻率最高的關鍵字
  • 選取兩個城市,分別分析月薪分佈狀況以及招聘要求的詞雲圖分析

2、具體分析過程

import pymongo
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
% matplotlib inline
plt.style.use('ggplot')
# 解決matplotlib顯示中文問題
plt.rcParams['font.sans-serif'] = ['SimHei']  # 指定默認字體
plt.rcParams['axes.unicode_minus'] = False  # 解決保存圖像是負號'-'顯示爲方塊的問題

1 讀取數據

client = pymongo.MongoClient('localhost')
db = client['zhilian']
table = db['python']

columns = ['zwmc',
           'gsmc',
           'zwyx',
           'gbsj',
           'gzdd',
           'fkl',
           'brief',
           'zw_link',
           '_id',
           'save_date']

# url_set = set([records['zw_link'] for records in table.find()])
# print(url_set)

df = pd.DataFrame([records for records in table.find()], columns=columns)

# columns_update = ['職位名稱',
# '公司名稱',
# '職位月薪',
# '公佈時間',
# '工做地點',
# '反饋率',
# '招聘簡介',
# '網頁連接',
# '_id',
# '信息保存日期']
# df.columns = columns_update
print('總行數爲:{}行'.format(df.shape[0]))
df.head(2)

結果如圖1所示:spring

2 數據整理

2.1 將str格式的日期變爲 datatime

df['save_date'] = pd.to_datetime(df['save_date'])
print(df['save_date'].dtype)
# df['save_date']
datetime64[ns]

2.2 篩選月薪格式爲「XXXX-XXXX」的信息

df_clean = df[['zwmc',
           'gsmc',
           'zwyx',
           'gbsj',
           'gzdd',
           'fkl',
           'brief',
           'zw_link',
           'save_date']]

# 對月薪的數據進行篩選,選取格式爲「XXXX-XXXX」的信息,方面後續分析
df_clean = df_clean[df_clean['zwyx'].str.contains('\d+-\d+', regex=True)]
print('總行數爲:{}行'.format(df_clean.shape[0]))
# df_clean.head()
總行數爲:22605行

2.3 分割月薪字段,分別獲取月薪的下限值和上限值

# http://stackoverflow.com/questions/14745022/pandas-dataframe-how-do-i-split-a-column-into-two

# http://stackoverflow.com/questions/20602947/append-column-to-pandas-dataframe

# df_temp.loc[: ,'zwyx_min'],df_temp.loc[: , 'zwyx_max'] = df_temp.loc[: , 'zwyx'].str.split('-',1).str #會有警告
s_min, s_max = df_clean.loc[: , 'zwyx'].str.split('-',1).str
df_min = pd.DataFrame(s_min)
df_min.columns = ['zwyx_min']
df_max = pd.DataFrame(s_max)
df_max.columns = ['zwyx_max']

df_clean_concat = pd.concat([df_clean, df_min, df_max], axis=1)
# df_clean['zwyx_min'].astype(int)
df_clean_concat['zwyx_min'] = pd.to_numeric(df_clean_concat['zwyx_min'])
df_clean_concat['zwyx_max'] = pd.to_numeric(df_clean_concat['zwyx_max'])
# print(df_clean['zwyx_min'].dtype)
print(df_clean_concat.dtypes)
df_clean_concat.head(2)

運行結果如圖2所示:
數據庫

  • 將數據信息按職位月薪進行排序
df_clean_concat.sort_values('zwyx_min',inplace=True)
# df_clean_concat.tail()
  • 判斷爬取的數據是否有重複值
# 判斷爬取的數據是否有重複值
print(df_clean_concat[df_clean_concat.duplicated('zw_link')==True])
Empty DataFrame
Columns: [zwmc, gsmc, zwyx, gbsj, gzdd, fkl, brief, zw_link, save_date, zwyx_min, zwyx_max]
Index: []
  • 從上述結果可看出,數據是沒有重複的。

3 對全國範圍內的職位進行分析

3.1 主要城市的招聘職位數量分佈狀況

# from IPython.core.display import display, HTML
ADDRESS = [ '北京', '上海', '廣州', '深圳',
           '天津', '武漢', '西安', '成都', '大連',
           '長春', '瀋陽', '南京', '濟南', '青島',
           '杭州', '蘇州', '無錫', '寧波', '重慶',
           '鄭州', '長沙', '福州', '廈門', '哈爾濱',
           '石家莊', '合肥', '惠州', '太原', '昆明',
           '煙臺', '佛山', '南昌', '貴陽', '南寧']
df_city = df_clean_concat.copy()

# 因爲工做地點的寫上,好比北京,包含許多地址爲北京-朝陽區等
# 能夠用替換的方式進行整理,這裏用pandas的replace()方法
for city in ADDRESS:
    df_city['gzdd'] = df_city['gzdd'].replace([(city+'.*')],[city],regex=True)

# 針對全國主要城市進行分析
df_city_main = df_city[df_city['gzdd'].isin(ADDRESS)]

df_city_main_count = df_city_main.groupby('gzdd')['zwmc','gsmc'].count()
df_city_main_count['gsmc'] = df_city_main_count['gsmc']/(df_city_main_count['gsmc'].sum())
df_city_main_count.columns = ['number', 'percentage']

# 按職位數量進行排序
df_city_main_count.sort_values(by='number', ascending=False, inplace=True)

# 添加輔助列,標註城市和百分比,方面在後續繪圖時使用
df_city_main_count['label']=df_city_main_count.index+ ' '+  ((df_city_main_count['percentage']*100).round()).astype('int').astype('str')+'%'
print(type(df_city_main_count))

# 職位數量最多的Top10城市的列表
print(df_city_main_count.head(10))
<class 'pandas.core.frame.DataFrame'>
      number  percentage   label
gzdd                            
北京      6936    0.315948  北京 32%
上海      3213    0.146358  上海 15%
深圳      1908    0.086913   深圳 9%
成都      1290    0.058762   成都 6%
杭州      1174    0.053478   杭州 5%
廣州      1167    0.053159   廣州 5%
南京       826    0.037626   南京 4%
鄭州       741    0.033754   鄭州 3%
武漢       552    0.025145   武漢 3%
西安       473    0.021546   西安 2%
  • 對結果進行繪圖:
from  matplotlib import cm

label = df_city_main_count['label']
sizes = df_city_main_count['number']

# 設置繪圖區域大小
fig, axes = plt.subplots(figsize=(10,6),ncols=2)
ax1, ax2 = axes.ravel()

colors = cm.PiYG(np.arange(len(sizes))/len(sizes)) # colormaps: Paired, autumn, rainbow, gray,spring,Darks

# 因爲城市數量太多,餅圖中不顯示labels和百分比
patches, texts = ax1.pie(sizes,labels=None, shadow=False, startangle=0, colors=colors)

ax1.axis('equal')  

ax1.set_title('職位數量分佈', loc='center')

# ax2 只顯示圖例(legend)
ax2.axis('off')
ax2.legend(patches, label, loc='center left', fontsize=9)

plt.savefig('job_distribute.jpg')
plt.show()

運行結果以下述餅圖所示:
微信

3.2 月薪分佈狀況(全國)

from matplotlib.ticker import FormatStrFormatter

fig, (ax1, ax2) = plt.subplots(figsize=(10,8), nrows=2)

x_pos = list(range(df_clean_concat.shape[0]))
y1 = df_clean_concat['zwyx_min']

ax1.plot(x_pos, y1)
ax1.set_title('Trend of min monthly salary in China', size=14)
ax1.set_xticklabels('')
ax1.set_ylabel('min monthly salary(RMB)')

bins = [3000,6000, 9000, 12000, 15000, 18000, 21000, 24000, 100000]
counts, bins, patches = ax2.hist(y1, bins, normed=1, histtype='bar', facecolor='g', rwidth=0.8)
ax2.set_title('Hist of min monthly salary in China', size=14)
ax2.set_yticklabels('')
# ax2.set_xlabel('min monthly salary(RMB)')

# http://stackoverflow.com/questions/6352740/matplotlib-label-each-bin
ax2.set_xticks(bins) #將bins設置爲xticks
ax2.set_xticklabels(bins, rotation=-90) # 設置爲xticklabels的方向

# Label the raw counts and the percentages below the x-axis...
bin_centers = 0.5 * np.diff(bins) + bins[:-1]
for count, x in zip(counts, bin_centers):
# # Label the raw counts
# ax2.annotate(str(count), xy=(x, 0), xycoords=('data', 'axes fraction'),
# xytext=(0, -70), textcoords='offset points', va='top', ha='center', rotation=-90)

    # Label the percentages
    percent = '%0.0f%%' % (100 * float(count) / counts.sum())
    ax2.annotate(percent, xy=(x, 0), xycoords=('data', 'axes fraction'),
        xytext=(0, -40), textcoords='offset points', va='top', ha='center', rotation=-90, color='b', size=14)

fig.savefig('salary_quanguo_min.jpg')

運行結果以下述圖所示:
markdown

不考慮部分極值後,分析月薪分佈狀況app

df_zwyx_adjust = df_clean_concat[df_clean_concat['zwyx_min']<=20000]

fig, (ax1, ax2) = plt.subplots(figsize=(10,8), nrows=2)

x_pos = list(range(df_zwyx_adjust.shape[0]))
y1 = df_zwyx_adjust['zwyx_min']

ax1.plot(x_pos, y1)
ax1.set_title('Trend of min monthly salary in China (adjust)', size=14)
ax1.set_xticklabels('')
ax1.set_ylabel('min monthly salary(RMB)')

bins = [3000,6000, 9000, 12000, 15000, 18000, 21000]
counts, bins, patches = ax2.hist(y1, bins, normed=1, histtype='bar', facecolor='g', rwidth=0.8)
ax2.set_title('Hist of min monthly salary in China (adjust)', size=14)
ax2.set_yticklabels('')
# ax2.set_xlabel('min monthly salary(RMB)')

# http://stackoverflow.com/questions/6352740/matplotlib-label-each-bin
ax2.set_xticks(bins) #將bins設置爲xticks
ax2.set_xticklabels(bins, rotation=-90) # 設置爲xticklabels的方向

# Label the raw counts and the percentages below the x-axis...
bin_centers = 0.5 * np.diff(bins) + bins[:-1]
for count, x in zip(counts, bin_centers):
# # Label the raw counts
# ax2.annotate(str(count), xy=(x, 0), xycoords=('data', 'axes fraction'),
# xytext=(0, -70), textcoords='offset points', va='top', ha='center', rotation=-90)

    # Label the percentages
    percent = '%0.0f%%' % (100 * float(count) / counts.sum())
    ax2.annotate(percent, xy=(x, 0), xycoords=('data', 'axes fraction'),
        xytext=(0, -40), textcoords='offset points', va='top', ha='center', rotation=-90, color='b', size=14)

fig.savefig('salary_quanguo_min_adjust.jpg')

運行結果以下述圖所示:
dom

3.3 相關技能要求

brief_list = list(df_clean_concat['brief'])
brief_str = ''.join(brief_list)
print(type(brief_str))
# print(brief_str)
# with open('brief_quanguo.txt', 'w', encoding='utf-8') as f:
# f.write(brief_str)
<class 'str'>

對獲取到的職位招聘要求進行詞雲圖分析,代碼以下:工具

# -*- coding: utf-8 -*-
""" Created on Wed May 17 2017 @author: lemon """

import jieba
from wordcloud import WordCloud, ImageColorGenerator
import matplotlib.pyplot as plt
import os
import PIL.Image as Image
import numpy as np

with open('brief_quanguo.txt', 'rb') as f: # 讀取文件內容
    text = f.read()
    f.close()

# 首先使用 jieba 中文分詞工具進行分詞
wordlist = jieba.cut(text, cut_all=False)      
# cut_all, True爲全模式,False爲精確模式

wordlist_space_split = ' '.join(wordlist)

d = os.path.dirname(__file__)
alice_coloring = np.array(Image.open(os.path.join(d,'colors.png')))
my_wordcloud = WordCloud(background_color='#F0F8FF', max_words=100, mask=alice_coloring,
                         max_font_size=300, random_state=42).generate(wordlist_space_split)

image_colors = ImageColorGenerator(alice_coloring)

plt.show(my_wordcloud.recolor(color_func=image_colors))
plt.imshow(my_wordcloud)            # 以圖片的形式顯示詞雲
plt.axis('off')                     # 關閉座標軸
plt.show()

my_wordcloud.to_file(os.path.join(d, 'brief_quanguo_colors_cloud.png'))

獲得結果以下:
字體

4 北京

4.1 月薪分佈狀況

df_beijing = df_clean_concat[df_clean_concat['gzdd'].str.contains('北京.*', regex=True)]
df_beijing.to_excel('zhilian_kw_python_bj.xlsx')
print('總行數爲:{}行'.format(df_beijing.shape[0]))
# df_beijing.head()
總行數爲:6936行

參考全國分析時的代碼,月薪分佈狀況圖以下:

4.2 相關技能要求

brief_list_bj = list(df_beijing['brief'])
brief_str_bj = ''.join(brief_list_bj)
print(type(brief_str_bj))
# print(brief_str_bj)
# with open('brief_beijing.txt', 'w', encoding='utf-8') as f:
# f.write(brief_str_bj)
<class 'str'>

詞雲圖以下:

5 長沙

5.1 月薪分佈狀況

df_changsha = df_clean_concat[df_clean_concat['gzdd'].str.contains('長沙.*', regex=True)]
# df_changsha = pd.DataFrame(df_changsha, ignore_index=True)
df_changsha.to_excel('zhilian_kw_python_cs.xlsx')
print('總行數爲:{}行'.format(df_changsha.shape[0]))
# df_changsha.tail()
總行數爲:280行

參考全國分析時的代碼,月薪分佈狀況圖以下:

5.2 相關技能要求

brief_list_cs = list(df_changsha['brief'])
brief_str_cs = ''.join(brief_list_cs)
print(type(brief_str_cs))
# print(brief_str_cs)
# with open('brief_changsha.txt', 'w', encoding='utf-8') as f:
# f.write(brief_str_cs)
<class 'str'>

詞雲圖以下:

【源代碼】

如需獲取源代碼,請關注微信公衆號,在公衆號後臺回覆「python求職Top10城市」(不含引號),獲取相關代碼。

相關文章
相關標籤/搜索