1. 安裝hadoophtml
詳細請參見本人的另一片博文《Hadoop 2.7.3 分佈式集羣安裝》java
2. 下載hive 2.3.4node
解壓文件到/opt/softwarepython
tar -xzvf ~/Downloads/apache-hive-2.3.4-bin.tar.gz -C /opt/software/
3. 配置hive環境變量:mysql
sudo vim /etc/profile
在文件末尾添加:web
#hive export HIVE_HOME=/opt/apache-hive-2.3.4-bin export HIVE_CONF_HOME=$HIVE_HOME/conf export PATH=.:$HIVE_HOME/bin:$PATH export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HIVE_HOME/lib/* export HCAT_HOME=$HIVE_HOME/hcatalog export PATH=$HCAT_HOME/bin:$PATH
在本人機器上以前已經配置好了hadoop和jdksql
4. 配置hive配置文件數據庫
cd /opt/software/apache-hive-2.3.4-bin/conf/ mv beeline-log4j2.properties.template beeline-log4j2.properties mv hive-env.sh.template hive-env.sh mv hive-exec-log4j2.properties.template hive-exec-log4j2.properties mv hive-log4j2.properties.template hive-log4j2.properties mv llap-cli-log4j2.properties.template llap-cli-log4j2.properties mv llap-daemon-log4j2.properties.template llap-daemon-log4j2.properties mv hive-default.xml.template hive-default.xml
vim /opt/software/apache-hive-2.3.4-bin/conf/hive-site.xml
修改如下幾個配置項:apache
javax.jdo.option.ConnectionURL
javax.jdo.option.ConnectionUserName
javax.jdo.option.ConnectionPassword
javax.jdo.option.ConnectionDriverName編程
<name>javax.jdo.option.ConnectionURL</name> <value>jdbc:mysql://127.0.0.1:3306/hive?characterEncoding=UTF8&useSSL=false&createDatabaseIfNotExist=true</value> <name>javax.jdo.option.ConnectionUserName</name> <value>hive</value> <name>javax.jdo.option.ConnectionPassword</name> <value>hive</value> <name>javax.jdo.option.ConnectionDriverName</name> <value>com.mysql.cj.jdbc.Driver</value>
注意: com.mysql.cj.jdbc.Driver這個配置可能在有些文章中是讓配置成com.mysql.jdbc.Driver,這是不對的,若是這樣,在啓動hive時會警告
Loading class `com.mysql.jdbc.Driver'. This is deprecated. The new driver class is `com.mysql.cj.jdbc.Driver'. The driver is automatically registered via the SPI and manual loading of the driver class is generally unnecessary.
將${system:java.io.tmpdir}和${system:user.name}替換爲/home/lenmom/hive_tmp和lenmom
:%s/\${system:java.io.tmpdir}/\/home/lenmom/hive_tmp/g :%s/\${system:user.name}/\/lenmom/g
若是不替換,在運行的時候會報錯,相似
Failed with exception java.io.IOException:java.lang.IllegalArgumentException: java.net.URISyntaxException: Relative path in absolute URI: ${system:user.name%7D
the configration below is the configuration from production systems(cdh 5.11.1):
<?xml version="1.0" encoding="UTF-8" standalone="no"?> <?xml-stylesheet type="text/xsl" href="configuration.xsl"?> <configuration> <!--hive cli terminal settings--> <property> <name>hive.cli.print.current.db</name> <value>false</value> <description>Whether to include the current database in the Hive prompt.</description> </property> <property> <name>hive.cli.print.header</name> <value>false</value> <description>Whether to print the names of the columns in query output.</description> </property> <property> <name>hive.cli.prompt</name> <value>hive</value> <description>Command line prompt configuration value. Other hiveconf can be used in this configuration value. Variable substitution will only be invoked at the Hive CLI startup. </description> </property> <property> <name>hive.cli.pretty.output.num.cols</name> <value>-1</value> <description>The number of columns to use when formatting output generated by the DESCRIBE PRETTY table_name command. If the value of this property is -1, then Hive will use the auto-detected terminal width. </description> </property> <!-- metastore - mysql--> <property> <name>javax.jdo.option.ConnectionUserName</name> <value>hive</value> <description>User for Hive Metastore database</description> </property> <property> <name>javax.jdo.option.ConnectionPassword</name> <value>hive</value> <description>Password for Hive Metastore database</description> </property> <property> <name>javax.jdo.option.ConnectionURL</name> <value>jdbc:mysql://127.0.0.1:3306/hive_2_3_4?characterEncoding=UTF8&useSSL=false&createDatabaseIfNotExist=true</value> <description></description> </property> <property> <name>javax.jdo.option.ConnectionDriverName</name> <value>com.mysql.jdbc.Driver</value> <description></description> </property> <property> <name>hive.metastore.try.direct.sql.ddl</name> <value>false</value> <description></description> </property> <property> <name>hive.metastore.try.direct.sql</name> <value>true</value> <description>Whether Hive Metastore should try to use direct SQL queries instead of DataNucleus for certain read paths. This can improve metastore performance by orders of magnitude when fetching many partitions. In case of failure, execution will fall back to DataNucleus. This configuration is not supported and is disabled when Hive service is configured with Postgres</description> </property> <property> <name>datanucleus.autoCreateSchema</name> <value>false</value> <description>Automatically create or upgrade tables in the Hive Metastore database when needed. Consider setting this to false and managing the schema manually.</description> </property> <property> <name>datanucleus.metadata.validate</name> <value>false</value> <description>Prevent Metastore operations in the event of schema version incompatibility. Consider setting this to true to reduce probability of schema corruption during Metastore operations. Note that setting this property to true will also set datanucleus.autoCreateSchema property to false and datanucleus.fixedDatastore property to true. Any values set in Cloudera Manager for these properties will be overridden</description> </property> <property> <name>hive.metastore.schema.verification</name> <value>true</value> <description>Prevent Metastore operations in the event of schema version incompatibility. Consider setting this to true to reduce probability of schema corruption during Metastore operations. Note that setting this property to true will also set datanucleus.autoCreateSchema property to false and datanucleus.fixedDatastore property to true. Any values set in Cloudera Manager for these properties will be overridden</description> </property> <property> <name>datanucleus.autoStartMechanism</name> <value>SchemaTable</value> <description></description> </property> <property> <name>datanucleus.fixedDatastore</name> <value>true</value> <description></description> </property> <property> <name>datanucleus.autoStartMechanism</name> <value>SchemaTable</value> <description></description> </property> <property> <name>hive.async.log.enabled</name> <value>false</value> <description></description> </property> <property> <name>hive.metastore.execute.setugi</name> <value>true</value> <description></description> </property> <property> <name>javax.jdo.PersistenceManagerFactoryClass</name> <value>org.datanucleus.api.jdo.JDOPersistenceManagerFactory</value> <description>class implementing the jdo persistence</description> </property> <!--file format setting--> <property> <name>hive.default.fileformat</name> <value>Parquet</value> <description>Default file format for CREATE TABLE statement. Options are TextFile and SequenceFile,rcfile,ORC,Parquet. Users can explicitly say CREATE TABLE ... STORED AS [textfile, sequencefile, rcfile, orc,parquet] to override</description> </property> <property> <name>hive.default.fileformat.managed</name> <value>parquet</value> <description> 可能值: [none, textfile, sequencefile, rcfile, orc,parquet]. 指定了建立 managed table 時默認的文件格式。 此值不會影響建立的外部表的默認文件格式。若是此值是 none 或沒有設置,將會使用 hive.default.fileformat 指定的值 </description> </property> <property> <name>hive.default.rcfile.serde</name> <value>org.apache.hadoop.hive.serde2.columnar.LazyBinaryColumnarSerDe</value> <description>The default SerDe Hive will use for the RCFile format</description> </property> <property> <name>hive.fileformat.check</name> <value>true</value> <description>Whether to check file format or not when loading data files</description> </property> <property> <name>hive.file.max.footer</name> <value>100</value> <description>maximum number of lines for footer user can define for a table file</description> </property> <!-- Hive Metastore Setting Turning Begin--> <property> <name>hive.metastore.server.max.threads</name> <value>3000</value> <description>Maximum number of worker threads in the Hive Metastore Server's thread pool</description> </property> <property> <name>hive.metastore.server.min.threads</name> <value>50</value> <description>Minimum number of worker threads in the Hive Metastore Server's thread pool</description> </property> <property> <name>datanucleus.connectionPool.maxPoolSize</name> <value>50</value> <description></description> </property> <property> <name>hive.metastore.server.max.message.size</name> <value>500</value> <description>Maximum message size Hive MetaStore accepts</description> </property> <property> <name>hive.cluster.delegation.token.store.class</name> <value>org.apache.hadoop.hive.thrift.MemoryTokenStore</value> <description>The delegation token store implementation class. Use DBTokenStore for Highly Available Metastore Configuration</description> </property> <property> <name>hive.metastore.client.socket.timeout</name> <value>300</value> <description>Timeout for requests to the Hive Metastore Server. Consider increasing this if you have tables with a lot of metadata and see timeout errors. Used by most Hive Metastore clients such as Hive CLI and HiveServer2, but not by Impala. Impala has a separately configured timeout</description> </property> <property> <name>hive.metastore.fshandler.threads</name> <value>15</value> <description> The number of threads the metastore uses when bulk adding partitions to the metastore. Each thread performs some metadata operations for each partition added, such as collecting statistics for the partition or checking if the partition directory exists. This config is also used to control the size of the threadpool used when scanning the filesystem to look for directories that could correspond to partitions, each thread performs a list status on each possible partition directory </description> </property> <!--hive server2 settings--> <property> <name>hive.metastore.warehouse.dir</name> <value>/user/hive/warehouse</value> </property> <property> <name>hive.metastore.uris</name> <value>thrift://127.0.0.1:9083</value> <description>Thrift URI for the remote metastore. Used by metastore client to connect to remote metastore.</description> </property> <property> <name>hive.server2.thrift.port</name> <value>10000</value> <description>Port number of HiveServer2 Thrift interface when hive.server2.transport.mode is 'binary',default 10000.</description> </property> <property> <name>hive.server2.thrift.http.port</name> <value>10001</value> <description>Port number of HiveServer2 Thrift interface when hive.server2.transport.mode is 'http'.</description> </property> <property> <name>hive.server2.thrift.bind.host</name> <value>0.0.0.0</value> <description>Bind host on which to run the HiveServer2 Thrift service.</description> </property> <property> <name>hive.server2.webui.host</name> <value>0.0.0.0</value> <description>the HiveServer2 binds to the wildcard address ("0.0.0.0") on all of its ports</description> </property> <property> <name>hive.server2.webui.port</name> <value>10002</value> <description>The port the HiveServer2 WebUI will listen on. This can be set to 0 to disable the WebUI</description> </property> <property> <name>hive.server2.webui.use.ssl</name> <value>false</value> <description> Encrypt communication between clients and HiveServer2 WebUI using Transport Layer Security (TLS) (formerly known as Secure Socket Layer (SSL) </description> </property> <property> <name>hive.server2.webui.max.threads</name> <value>50</value> <description>The max threads for the HiveServer2 WebUI</description> </property> <property> <name>hive.server2.enable.doAs</name> <value>true</value> <description>HiveServer2 will impersonate the beeline client user when talking to other services such as MapReduce and HDFS.</description> </property> <property> <name>hive.warehouse.subdir.inherit.perms</name> <value>true</value> <description>Let the table directories inherit the permission of the Warehouse or Database directory instead of being created with the permissions derived from dfs umask. This allows Impala to insert into tables created via Hive </description> </property> <property> <name>hive.log.explain.output</name> <value>false</value> <description>When enabled, HiveServer2 logs EXPLAIN EXTENDED output for every query at INFO log4j level.</description> </property> <property> <name>hive.server2.use.SSL</name> <value>false</value> <description>Encrypt communication between clients and HiveServer2 using Transport Layer Security (TLS) (formerly known as Secure Socket Layer (SSL)).</description> </property> <property> <name>hive.exec.scratchdir</name> <value>/tmp/hive-staging</value> <description>Directory in HDFS where Hive writes intermediate data between MapReduce jobs. If not specified, Hive uses a default location.</description> </property> <property> <name>hive.querylog.location</name> <value>/home/lenmom/workspace/software/apache-hive-2.3.4-bin/logs</value> <description></description> </property> <!--beeline not show detail mr logs, the logs would be redirect to the log files.--> <property> <name>hive.server2.logging.operation.enabled</name> <value>true</value> <description>When enabled, HiveServer2 will temporarily save logs associated with ongoing operations. This enables clients like beeline and Hue to request and display logs for a particular ongoing operation. Logs are removed upon completion of operation. </description> </property> <property> <name>hive.server2.logging.operation.log.location</name> <value>/home/lenmom/workspace/software/apache-hive-2.3.4-bin/logs</value> <description>Top level directory where operation logs are temporarily stored if Enable HiveServer2 Operations Logging is true. Logs are stored in session and operation level subdirectories under this location and are removed on completion of operation. </description> </property> <property> <name>hive.execution.engine</name> <value>mr</value> <description>The default execution engine for running hive queries. Can be set to mr for MapReduce or spark for Spark.</description> </property> <!--this item can only take effect if hive.execution.engine set to spark--> <!-- <property> <name>spark.master</name> <value>yarn-cluster</value> <description>Name of the Spark on YARN service that this Hive service instance depends on. If selected, Hive jobs can use the Spark execution engine instead of MapReduce2. Requires that Hive depends on YARN. See Configuring Hive on Spark for more information about Hive on Spark. In CDH releases lower than 5.7, Hive on Spark also requires setting Enable Hive on Spark to true </description> </property> --> <!--hive server2 perf tuning--> <property> <name>hive.server2.session.check.interval</name> <value>900000</value> <description> The check interval for session/operation timeout, in milliseconds, which can be disabled by setting to zero or a negative value </description> </property> <property> <name>hive.server2.idle.session.timeout</name> <value>43200000</value> <description> Session will be closed when not accessed for this duration of time, in milliseconds; disable by setting to zero or a negative value </description> </property> <property> <name>hive.server2.idle.session.timeout_check_operation</name> <value>true</value> <description> Session will be considered to be idle only if there is no activity, and there is no pending operation. This setting takes effect only if session idle timeout (hive.server2.idle.session.timeout) and checking (hive.server2.session.check.interval) are enabled </description> </property> <property> <name>hive.server2.idle.operation.timeout</name> <value>21600000</value> <description></description> </property> <property> <name>hive.server2.thrift.min.worker.threads</name> <value>5</value> <description></description> </property> <property> <name>hive.server2.thrift.max.worker.threads</name> <value>1000</value> <description></description> </property> <property> <name>mapred.reduce.tasks</name> <value>-1</value> <description>Default number of reduce tasks per job. Usually set to a prime number close to the number of available hosts. Ignored when mapred.job.tracker is "local". Hadoop sets this to 1 by default, while Hive uses -1 as the default. When set to -1, Hive will automatically determine an appropriate number of reducers for each job. </description> </property> <property> <name>hive.exec.reducers.max</name> <value>999</value> <description>Max number of reducers to use. If the configuration parameter Hive Reduce Tasks is negative, Hive will limit the number of reducers to the value of this parameter. </description> </property> <property> <name>hive.auto.convert.join</name> <value>true</value> <description>Enable optimization that converts common join into MapJoin based on input file size.</description> </property> <property> <name>hive.auto.convert.join.noconditionaltask.size</name> <value>20971520</value> <description>If Hive auto convert join is on, and the sum of the size for n-1 of the tables/partitions for a n-way join is smaller than the specified size, the join is directly converted to a MapJoin (there is no conditional task) </description> </property> <!-- <property> <name>hive.optimize.index.filter</name> <value>true</value> </property> --> <!-- hive.vectorized.execution--> <!-- <property> <name>hive.vectorized.groupby.checkinterval</name> <value>4096</value> </property> <property> <name>hive.vectorized.groupby.flush.percent</name> <value>0.1</value> </property> <property> <name>hive.vectorized.execution.enabled</name> <value>true</value> </property> <property> <name>hive.vectorized.execution.reduce.enabled</name> <value>false</value> </property> --> <property> <name>hive.optimize.bucketmapjoin.sortedmerge</name> <value>false</value> <description>Whether to try sorted merge bucket (SMB) join</description> </property> <property> <name>hive.smbjoin.cache.rows</name> <value>10000</value> <description>The number of rows with the same key value to be cached in memory per SMB-joined table</description> </property> <property> <name>hive.fetch.task.conversion</name> <value>minimal</value> <description> Some select queries can be converted to a single FETCH task instead of a MapReduce task, minimizing latency. A value of none disables all conversion, minimal converts simple queries such as SELECT * and filter on partition columns, and more converts SELECT queries including FILTERS </description> </property> <property> <name>hive.fetch.task.conversion.threshold</name> <value>268435456</value> <description>Above this size, queries are converted to fetch tasks</description> </property> <property> <name>hive.limit.pushdown.memory.usage</name> <value>0.4</value> <description> The maximum percentage of heap to be used for hash in ReduceSink operator for Top-K selection. 0 means the optimization is disabled. Accepted values are between 0 and 1 </description> </property> <property> <name>hive.optimize.reducededuplication</name> <value>true</value> <description>Remove extra map-reduce jobs if the data is already clustered by the same key, eliminating the need to repartition the dataset again</description> </property> <property> <name>hive.optimize.reducededuplication.min.reducer</name> <value>4</value> <description>When the number of ReduceSink operators after merging is less than this number, the ReduceDeDuplication optimization will be disabled.</description> </property> <property> <name>hive.map.aggr</name> <value>true</value> <description> Enable map-side partial aggregation, which cause the mapper to generate fewer rows. This reduces the data to be sorted and distributed to reducers. </description> </property> <property> <name>hive.map.aggr.hash.percentmemory</name> <value>0.5</value> <description> Portion of total memory used in map-side partial aggregation. When exceeded, the partially aggregated results will be flushed from the map task to the reducers. </description> </property> <property> <name>hive.optimize.sort.dynamic.partition</name> <value>false</value> <description>When dynamic partition is enabled, reducers keep only one record writer at all times, which lowers the memory pressure on reducers</description> </property> <property> <name>hive.mv.files.thread</name> <value>15</value> <description> The number of threads used by HiveServer2 to move data from the staging directory to another location (typically to the final table location). A separate thread pool of workers of this size is used for each query, which means this configuration can be set on a per-query basis too </description> </property> <property> <name>hive.blobstore.use.blobstore.as.scratchdir</name> <value>false</value> <description> When writing data to a table on a blobstore (such as S3), whether or not the blobstore should be used to store intermediate data during Hive query execution. Setting this to true can degrade performance for queries that spawn multiple MR / Spark jobs, but is useful for queries whose intermediate data cannot fit in the allocated HDFS cluster. </description> </property> <property> <name>hive.load.dynamic.partitions.thread</name> <value>15</value> <description> Number of threads used to load dynamically generated partitions. Loading requires renaming the file its final location, and updating some metadata about the new partition. Increasing this can improve performance when there are a lot of partitions dynamically generated. </description> </property> <property> <name>hive.exec.input.listing.max.threads</name> <value>15</value> <description> Maximum number of threads that Hive uses to list input files. Increasing this value can improve performance when there are a lot of partitions being read, or when running on blobstores </description> </property> <!--beeline user name and password, this configuration is optional, default is empty--> <!-- <property> <name>hive.server2.thrift.client.user</name> <value>hadoop</value> <description>Username to use against thrift client</description> </property> <property> <name>hive.server2.thrift.client.password</name> <value>hadoop</value> <description>Password to use against thrift client</description> </property> --> <!--spark settings--> <property> <name>spark.executor.memory</name> <value>4294967296</value> <description>Maximum size of each Spark executor's Java heap memory when Hive is running on Spark</description> </property> <property> <name>spark.yarn.executor.memoryOverhead</name> <value>4096</value> <description> This is the amount of extra off-heap memory that can be requested from YARN, per executor process. This, together with spark.executor.memory, is the total memory that YARN can use to create JVM for an executor process </description> </property> <property> <name>spark.executor.cores</name> <value>4</value> <description>Number of cores per Spark executor.</description> </property> <property> <name>spark.driver.memory</name> <value>8589934592</value> <description>Maximum size of each Spark driver's Java heap memory when Hive is running on Spark.</description> </property> <property> <name>spark.yarn.driver.memoryOverhead</name> <value>4096</value> <description> This is the amount of extra off-heap memory that can be requested from YARN, per driver. This, together with spark.driver.memory, is the total memory that YARN can use to create JVM for a driver process </description> </property> <property> <name>spark.dynamicAllocation.enabled</name> <value>true</value> <description>When enabled, Spark will add and remove executors dynamically to Hive jobs. This is done based on the workload</description> </property> <property> <name>spark.dynamicAllocation.initialExecutors</name> <value>1</value> <description> Initial number of executors used by the application at any given time. This is required if the dynamic executor allocation feature is enabled. </description> </property> <property> <name>spark.dynamicAllocation.minExecutors</name> <value>1</value> <description>Lower bound on the number of executors used by the application at any given time. This is used by dynamic executor allocation</description> </property> <property> <name>spark.dynamicAllocation.maxExecutors</name> <value>8</value> <description>Upper bound on the number of executors used by the application at any given time. This is used by dynamic executor allocation</description> </property> <property> <name>spark.shuffle.service.enabled</name> <value>true</value> <description>enable spark External shuffle Service.</description> </property> <!--merge small files--> <property> <name>hive.merge.mapfiles</name> <value>true</value> <description> Merge small files at the end of a map-only job. When enabled, a map-only job is created to merge the files in the destination table/partitions </description> </property> <property> <name>hive.merge.mapredfiles</name> <value>true</value> <description> Merge small files at the end of a map-reduce job. When enabled, a map-only job is created to merge the files in the destination table/partitions </description> </property> <property> <name>hive.merge.sparkfiles</name> <value>true</value> <description> Merge small files at the end of a Spark job. When enabled, a map-only job is created to merge the files in the destination table/partitions </description> </property> <property> <name>hive.merge.smallfiles.avgsize</name> <value>167772160</value> <description> When the average output file size of a job is less than the value of this property, Hive will start an additional map-only job to merge the output files into bigger files. This is only done for map-only jobs if hive.merge.mapfiles is true, for map-reduce jobs if hive.merge.mapredfiles is true, and for Spark jobs if hive.merge.sparkfiles is true </description> </property> <property> <name>hive.merge.size.per.task</name> <value>268435456</value> <description>The desired file size after merging. This should be larger than hive.merge.smallfiles.avgsize</description> </property> <property> <name>hive.exec.reducers.bytes.per.reducer</name> <value>268435456</value> <description>Size per reducer. If the input size is 10GiB and this is set to 1GiB, Hive will use 10 reducers</description> </property> <property> <name>hive.exec.copyfile.maxsize</name> <value>33554432</value> <description>Smaller than this size, Hive uses a single-threaded copy; larger than this size, Hive uses DistCp</description> </property> <!--cbo optimization--> <property> <name>hive.cbo.enable</name> <value>true</value> <description>Enabled the Calcite-based Cost-Based Optimizer for HiveServer2</description> </property> <property> <name>hive.stats.fetch.column.stats</name> <value>true</value> <description>Whether column stats for a table are fetched during explain</description> </property> <property> <name>hive.compute.query.using.stats</name> <value>true</value> <description> Enable optimization that checks if a query can be answered using statistics. If so, answers the query using only statistics stored in metastore </description> </property> <property> <name>hive.stats.fetch.partition.stats</name> <value>true</value> <description> hive.stats.fetch.partition.stats若是沒有可用的統計信息或hive.stats.fetch.partition.stats = false,則查詢啓動可能會稍慢。在這種狀況下,Hive最終會爲每一個要訪問的文件查看文件大小,調整hive.metastore.fshandler.threads有助於減小Metastore操做所需的總時間 </description> </property> <property> <name>hive.stats.autogather</name> <value>true</value> <description>auto collect statistics when using insert overwrite command,default true</description> </property> <property> <name>hive.stats.collect.rawdatasize</name> <value>true</value> <description>auto collect raw data size statistics when using insert overwrite command</description> </property> <!--hive server2 metrics--> <property> <name>hive.service.metrics.file.location</name> <value>/home/lenmom/workspace/software/apache-hive-2.3.4-bin/logs/metrics.log</value> <description></description> </property> <property> <name>hive.server2.metrics.enabled</name> <value>true</value> <description></description> </property> <property> <name>hive.service.metrics.file.frequency</name> <value>30000</value> <description></description> </property> <!--hive permmission settings--> <property> <name>hive.security.authorization.createtable.owner.grants</name> <value>ALL</value> <description></description> </property> <property> <name>hive.security.authorization.task.factory</name> <value>org.apache.hadoop.hive.ql.parse.authorization.HiveAuthorizationTaskFactoryImpl</value> <description></description> </property> <property> <name>hive.users.in.admin.role</name> <value>hive</value> <description></description> </property> <property> <name>hive.security.authorization.createtable.user.grants</name> <value>lenmom,hive,admin:ALL;test:select</value> <description></description> </property> <property> <name>hive.security.authorization.createtable.role.grants </name> <value>data:ALL;test:select</value> <description></description> </property> <property> <name>hive.security.authorization.createtable.group.grants</name> <value>data:ALL;test:select</value> <description></description> </property> <!--Table Lock Manager:Required--> <property> <name>hive.support.concurrency</name> <value>true</value> <description>Enable Hive's Table Lock Manager Service</description> </property> <property> <name>hive.server2.support.dynamic.service.discovery</name> <value>true</value> <description></description> </property> <property> <name>hive.server2.zookeeper.namespace</name> <value>hiveserver2</value> <description>The parent node in ZooKeeper used by HiveServer2 when supporting dynamic service discovery.</description> </property> <property> <name>hive.zookeeper.client.port</name> <value>2181</value> <description>The port at which the clients will connect.If ZooKeeper is not using the default value(2181) for ClientPort, you need to set hive.zookeeper.client.port </description> </property> <property> <name>hive.zookeeper.quorum</name> <value>127.0.0.1:2181</value> <description> Zookeeper quorum used by Hive's Table Lock Manager, a list of hosts seperated with comma,if the zk port number is 2181,then this can be ommited. </description> </property> <!--transaction comfiguration--> <property> <name>hive.exec.dynamic.partition.mode</name> <value>nonstrict</value> <description></description> </property> <property> <name>hive.exec.dynamic.partition</name> <value>true</value> <description></description> </property> <property> <name>hive.txn.manager</name> <value>org.apache.hadoop.hive.ql.lockmgr.DbTxnManager</value> <description></description> </property> <property> <name>hive.compactor.initiator.on</name> <value>true</value> <description></description> </property> <property> <name>hive.compactor.worker.threads</name> <value>1</value> <description> thrift metastore上運行的工做線程數.爲了支持事務,必須設置該值爲一個正整數.增長該值會減小表 或分區在壓縮時須要的時間,但同時會增長hadoop集羣的後臺負載,由於會有更多的MR做業在後臺運行 </description> </property> <property> <name>hive.enforce.bucketing</name> <value>true</value> <description> hive2.x如下版本默認爲false,hive2.x版本已經將該屬性移除,也就是說永遠爲true.爲了支持 insert,update,delete操做,必須設置該屬性爲true。若是部署版本爲hive2.x版本,能夠不設置該值。 </description> </property> </configuration>
其中最後那部分
<!--transaction comfiguration--> <property> <name>hive.exec.dynamic.partition.mode</name> <value>nonstrict</value> </property> <property> <name>hive.exec.dynamic.partition</name> <value>true</value> </property> <property> <name>hive.txn.manager</name> <value>org.apache.hadoop.hive.ql.lockmgr.DbTxnManager</value> </property> <property> <name>hive.compactor.initiator.on</name> <value>true</value> </property> <property> <name>hive.compactor.worker.threads</name> <value>1</value> <description> thrift metastore上運行的工做線程數.爲了支持事務,必須設置該值爲一個正整數.增長該值會減小表 或分區在壓縮時須要的時間,但同時會增長hadoop集羣的後臺負載,由於會有更多的MR做業在後臺運行 </description> </property> <property> <name>hive.enforce.bucketing</name> <value>true</value> <description> hive2.x如下版本默認爲false,hive2.x版本已經將該屬性移除,也就是說永遠爲true.爲了支持 insert,update,delete操做,必須設置該屬性爲true。若是部署版本爲hive2.x版本,能夠不設置該值。 </description> </property>
是爲了讓hive支持事務,即行級更新.
or you can use the following script in hive hql script to enable transaction:
set hive.support.concurrency=true; set hive.enforce.bucketing=true; set hive.exec.dynamic.partition=true; set hive.exec.dynamic.partition.mode=nonstrict; set hive.txn.manager=org.apache.hadoop.hive.ql.lockmgr.DbTxnManager; set hive.compactor.initiator.on=true; set hive.compactor.worker.threads=2;
此外,若是要支持行級更新,還要在hive元數據庫中執行一下sql語句
use hive; truncate table hive.NEXT_LOCK_ID; truncate table hive.NEXT_COMPACTION_QUEUE_ID; truncate table hive.NEXT_TXN_ID; insert into hive.NEXT_LOCK_ID values(1); insert into hive.NEXT_COMPACTION_QUEUE_ID values(1); insert into hive.NEXT_TXN_ID values(1); commit;
默認狀況下,這幾張表的數據爲空.若是不添加數據,會報如下錯誤:
org.apache.hadoop.hive.ql.lockmgr.DbTxnManager FAILED: Error in acquiring locks: Error communicating with the metastore
配置hive-env.sh
cp /opt/software/apache-hive-2.3.4-bin/conf/hive-env.sh.template /opt/software/apache-hive-2.3.4-bin/conf/hive-env.sh
sudo vim /opt/software/apache-hive-2.3.4-bin/conf/hive-env.sh
添加如下配置:
export HADOOP_HEAPSIZE=1024 HADOOP_HOME=/opt/software/hadoop-2.7.3/ #這裏設置成本身的hadoop路徑 export HIVE_CONF_DIR=/opt/software/apache-hive-2.3.4-bin/conf/ export HIVE_AUX_JARS_PATH=/opt/software/apache-hive-2.3.4-bin/lib/ export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HIVE_HOME/lib/*
5. 安裝mysql數據庫
具體請參見本人的博文《ubuntu18.04 安裝mysql server》
6. 下載mysql-connector-java-8.0.11.jar或者到mysql官方網站下載
cp mysql-connector-java-8.0.11.jar $HIVE_HOME/lib/
7. 建立並初始化hive mysql元數據庫
mysql -uroot -proot mysql> create database hive DEFAULT CHARSET utf8 COLLATE utf8_general_ci; #在mysql中建立hive數據庫 Query OK, 1 row affected, 2 warnings (0.11 sec) mysql> create user 'hive' identified by 'hive'; #建立hive用戶,密碼爲hive Query OK, 0 rows affected (0.03 sec) mysql> grant all privileges on *.* to 'hive' with grant option; #受權hive用戶的權限 Query OK, 0 rows affected (0.11 sec) mysql> flush privileges; #刷新權限 Query OK, 0 rows affected (0.01 sec) mysql> exit
若是是mysql5.7如下版本,設置遠程訪問,受權,則使用如下語句:
grant all privileges on *.* to hive@'%'identified by 'hive'; #受權hive用戶遠程訪問 flush privileges; #應用受權設置
初始化hive元數據庫:
$HIVE_HOME/bin/schematool -initSchema -dbType mysql
SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/home/lenmom/workspace/software/apache-hive-2.3.4-bin/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/home/lenmom/workspace/software/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory] Metastore connection URL: jdbc:mysql://127.0.0.1:3306/hive?characterEncoding=UTF8&useSSL=false&createDatabaseIfNotExist=true Metastore Connection Driver : com.mysql.jdbc.Driver Metastore connection User: hive Loading class `com.mysql.jdbc.Driver'. This is deprecated. The new driver class is `com.mysql.cj.jdbc.Driver'. The driver is automatically registered via the SPI and manual loading of the driver class is generally unnecessary. Starting metastore schema initialization to 2.3.0 Initialization script hive-schema-2.3.0.mysql.sql Initialization script completed schemaTool completed
note: we can also use the following script to initialize the hive database:
$HIVE_HOME/bin/schematool -initSchemaTo 2.3.0 -dbType mysql -verbose
which the -initSchemaTo specifies the hive database schema version it initializes. and this will be persistent in the table
use there is already exists a hive metastore exists with lower version, we can the following script to upgrade the metastore database:
$ schematool -dbType mysql -passWord hive -upgradeSchemaFrom 0.13.1 -userName hive Metastore connection URL: jdbc:mysql://127.0.0.1:3306/hive?useUnicode=true&characterEncoding=UTF-8 Metastore Connection Driver : com.mysql.jdbc.Driver Metastore connection User: hive Starting upgrade metastore schema from version 0.13.1 to 2.3.4 Upgrade script upgrade-0.13.1-to-<new_version>.mysql.sql Completed pre-0-upgrade-0.13.1-to-<new_version>.mysql.sql Completed upgrade-0.13.1-to-<new_version>.mysql.sql schemaTool completed
執行該命令會自動讀取hive配置文件中的鏈接信息,在mysql的hive庫中建立表結構和數據的初始化
8. 先啓動Hadoop,而後進入hive的lib目錄,使用hive 命令 啓動hive
在hdfs中創建hive文件夾
hdfs dfs -mkdir -p /tmp hdfs dfs -mkdir -p /usr/hive/warehouse hdfs dfs -chmod g+w /tmp hdfs dfs -chmod g+w /usr/hive/warehouse
啓動hadoop
start-dfs.sh #啓動hdfs start-yarn.sh #啓動yarn #或者,可是通常不建議所有啓動,除非你的機器配置特別強 start-all.sh #所有啓動
啓動hive meta service
在默認的狀況下,metastore和hive服務運行在同一個進程中,使用這個服務,可讓metastore做爲一個單獨的進程運行,咱們能夠經過METASTOE——PORT來指定監聽的端口號, 默認端口爲9083
hive --service metastore &
啓動hiveservice2服務
Hive以提供Thrift服務的服務器形式來運行,能夠容許許多個不一樣語言編寫的客戶端進行通訊,使用須要啓動HiveServer服務以和客戶端聯繫,咱們能夠經過設置HIVE_PORT環境變量來設置服務器所監聽的端口,在默認狀況下,端口號爲10000,這個能夠經過如下方式來啓動Hiverserver:
bin/hive --service hiveserver2 -p 10002
其中-p參數也是用來指定監聽端口的,啓動後,用java,python等編程語言能夠經過jdbc等驅動的訪問hive的服務了,適合編程模式。HiveServer2支持多客戶端的併發和認證,爲開放API客戶端如JDBC、ODBC提供更好的支持。
hiveserver2 #或者 hive --service hiveserver2 & #最後的&表示在後臺運行 thrift端口號默認爲10000, web http://{hive server ip address}:10002/ 訪問
啓動hive web界面啓動方式
hive –service hwi & #用於經過瀏覽器來訪問hive,瀏覽器訪問地址是:http://{hive server ip address}:9999/hwi
注意:這個須要使用到web的war包,須要經過源碼編譯,這個服務是可選的,能夠不須要啓動,可是metastore是必需要啓動的。具體操做爲
a) 下載對應的src tar包
b) cd ${HIVE_SRC_HOME}/hwi/web
c) 打包 jar -cvf hive-hwi-2.3.4.war *
d) cp hive-hwi-2.3.4.war ${HIVE_HOME}/lib
在${HIVE_HOME}/conf/hive-site.xml下添加如下配置
<property> <name>hive.hwi.war.file</name> <value>lib/hive-hwi-2.3.4.war</value> <description>This sets the path to the HWI war file, relative to ${HIVE_HOME}. </description> </property> <property> <name>hive.hwi.listen.host</name> <value>192.168.1.254</value> <description>This is the host address the Hive Web Interface will listen on</description> </property> <property> <name>hive.hwi.listen.port</name> <value>9999</value> <description>This is the port the Hive Web Interface will listen on</description> </property>
啓動hive客戶端
hive
9. 若是遇到錯誤,能夠打開hive日誌調試模式
hive --hiveconf hive.root.logger=DEBUG,console
10 其餘機器若是須要使用hive
安裝hive客戶端,可參照如下操做
scp -r /opt/software/apache-hive-2.3.4-bin root@lenmom11:/opt/software/ #複製前面安裝的hive到目標機器 # /etc/profile中添加hive的環境變量 #hive export HIVE_HOME=/opt/software/apache-hive-2.3.4-bin export HIVE_CONF_DIR=$HIVE_HOME/conf export PATH=.:$HIVE_HOME/bin:$PATH #修改hive-site.xml內容爲 <?xml version="1.0" encoding="UTF-8" standalone="no"?> <?xml-stylesheet type="text/xsl" href="configuration.xsl"?> <configuration> <property> <name>hive.metastore.warehouse.dir</name> <value>/hive/warehouse</value> </property> <property> <name>hive.metastore.uris</name> <value>thrift://192.168.1.254:9083</value> </property> <property> <name>hive.querylog.location</name> <value>/opt/software/apache-hive-2.3.4-bin/logs</value> </property> </configuration>
若是要使用beeline,出現錯誤
Error: Failed to open new session: java.lang.RuntimeException: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.authorize.AuthorizationException): User: root is not allowed to impersonate anonymous (state=,code=0)
Beeline version 2.1.0 by Apache Hive
分析 : 訪問權限問題
解決 :在hdfs 的配置文件core-site.xml中加入以下配置,root 爲位置填入 User:* ,etc hadoop.proxyuser.eamon.hosts
vim $HADOOP_HOME/etc/hadoop/core-site.xml
添加如下配置
<property> <name>hadoop.proxyuser.root.hosts</name> <value>*</value> </property> <property> <name>hadoop.proxyuser.root.groups</name> <value>*</value> </property>
reference: