多列聯繫表

  • table()生成多維列表
> mytable <- xtabs(~ Treatment+Sex+Improved, data=Arthritis)  
> mytable
, , Improved = None

         Sex
Treatment Female Male
  Placebo     19   10
  Treated      6    7

, , Improved = Some

         Sex
Treatment Female Male
  Placebo      7    0
  Treated      5    2

, , Improved = Marked

         Sex
Treatment Female Male
  Placebo      6    1
  Treated     16    5
  • ftable()

生成一種緊湊而吸引人的方式輸出多維列聯表code

> ftable(mytable)    #將mytable做爲參數傳入fatable()
                 Improved None Some Marked
Treatment Sex                             
Placebo   Female            19    7      6
          Male              10    0      1
Treated   Female             6    5     16
          Male               7    2      5

 

  • 邊際及比例計算
> margin.table(mytable, 1)    #計算第一個變量 Treatment的邊際頻數(即求個數和)
Treatment
Placebo Treated 
     43      41 
> margin.table(mytable, 2)
Sex
Female   Male 
    59     25 
> margin.table(mytable, 2)
Sex
Female   Male 
    59     25 
> margin.table(mytable, c(1,3))  # 計算Treatment*Improved分組的邊際頻數
         Improved
Treatment None Some Marked
  Placebo   29    7      7
  Treated   13    7     21
> ftable(prop.table(mytable, c(1,2)))  #計算Treatment*Sex組合中改善狀況爲None,Some和Marked的比例
                 Improved       None       Some     Marked
Treatment Sex                                             
Placebo   Female          0.59375000 0.21875000 0.18750000
          Male            0.90909091 0.00000000 0.09090909
Treated   Female          0.22222222 0.18518519 0.59259259
          Male            0.50000000 0.14285714 0.35714286
> ftable(addmargins(prop.table(mytable, c(1, 2)), 3))  #乘以100,獲得百分比而不是比例
                 Improved       None       Some     Marked        Sum
Treatment Sex                                                        
Placebo   Female          0.59375000 0.21875000 0.18750000 1.00000000
          Male            0.90909091 0.00000000 0.09090909 1.00000000
Treated   Female          0.22222222 0.18518519 0.59259259 1.00000000
          Male            0.50000000 0.14285714 0.35714286 1.00000000
相關文章
相關標籤/搜索