http://www.javashuo.com/article/p-ekakfukt-eu.htmlhtml
codeforces-1130A~Gnode
和隊友作了一套題,,ios
題意是給你一串整數,,要找到一個除數使得每個數被除後正數的個數大於等於 \(\lceil \frac{n}{2} \rceil\),,,c++
統計出全部正數,負數的個數,,正數多那個除數就是1,負數多就是-1算法
//cf #include <bits/stdc++.h> //#include <iostream> //#include <cstdio> //#include <cstdlib> //#include <string.h> //#include <algorithm> #define aaa cout<<233<<endl; #define endl '\n' #define pb push_back using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii; const int inf = 0x3f3f3f3f;//1061109567 const ll linf = 0x3f3f3f3f3f3f3f; const double eps = 1e-6; const double pi = 3.14159265358979; const int maxn = 1e6 + 5; const int maxm = 2e5 + 5; const ll mod = 1e9 + 7; int a[maxn]; int main() { // freopen("233.in" , "r" , stdin); // freopen("233.out" , "w" , stdout); ios_base::sync_with_stdio(0); cin.tie(0);cout.tie(0); int n; cin >> n; for(int i = 1; i <= n; ++i)cin >> a[i]; sort(a + 1, a + 1 + n); int nump = 0; int numn = 0; for(int i = 1; i <= n; ++i) if(a[i] > 0) ++nump; else if(a[i] < 0) ++numn; if(nump >= (n + 1) / 2) cout << 1 << endl; else if(numn >= (n + 1) / 2) cout << -1 << endl; else cout << 0 << endl; return 0; }
題意是由兩組1~n的數組成的序列,,每個人選擇一組,,費用是兩個樹之間的距離,,而後問你總距離最小是多少,,數組
我一開始想着先貪心處理一我的的選擇出最少的,,再加上剩下的那我的的,,而後就wa了,,由於這樣並不保證這一次選的和下一次選的距離和是最小的,,解決方法是兩個一塊兒處理,,考慮每一種選擇的狀況,,這樣取最小的就好了,,,spa
//cf #include <bits/stdc++.h> //#include <iostream> //#include <cstdio> //#include <cstdlib> //#include <string.h> //#include <algorithm> #define aaa cout<<233<<endl; #define endl '\n' #define pb push_back using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii; const int inf = 0x3f3f3f3f;//1061109567 const ll linf = 0x3f3f3f3f3f3f3f; const double eps = 1e-6; const double pi = 3.14159265358979; const int maxn = 1e6 + 5; const int maxm = 1e4 + 5; const ll mod = 1e9 + 7; int a[maxn][2]; bool flag[maxn]; int main() { // freopen("233.in" , "r" , stdin); // freopen("233.out" , "w" , stdout); ios_base::sync_with_stdio(0); cin.tie(0);cout.tie(0); int n;cin >> n; int t; memset(flag, false, sizeof flag); for(int i = 1; i <= 2 * n; ++i) { cin >> t; if(!flag[t]) { a[t][0] = i; flag[t] = true; } else a[t][1] = i; } ll ans = a[1][0] + a[1][1] - 2; for(int i = 1; i <= n - 1; ++i) { int p = abs(a[i + 1][0] - a[i][0]) + abs(a[i + 1][1] - a[i][1]); int q = abs(a[i + 1][0] - a[i][1]) + abs(a[i + 1][1] - a[i][0]); ans += min(p, q); } cout << ans << endl; return 0; }
給你一個地圖,,其中陸地是0,水則是1,,而後給你一個起點一個終點,,你能夠在任意兩塊陸地上建 一條 隧道使這兩片陸地相通,,而後問你起點到終點須要的隧道的最小長度,,,code
由於只能建一條隧道,,因此若是起點所在的陸地與終點所在的陸地不相通的話,,那麼這條隧道必定在這兩片陸地之間,,數據量不大,,直接枚舉這兩片陸地上的點,,取最小的距離就好了,,,htm
判斷一個點是否在起點或終點所在的陸地能夠現用並查集把地圖 「染色」,,,這樣就能夠枚舉了,,,blog
//cf #include <bits/stdc++.h> //#include <iostream> //#include <cstdio> //#include <cstdlib> //#include <string.h> //#include <algorithm> #define aaa cout<<233<<endl; #define endl '\n' #define pb push_back using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii; const int inf = 0x3f3f3f3f;//1061109567 const ll linf = 0x3f3f3f3f3f3f3f; const double eps = 1e-6; const double pi = 3.14159265358979; const int maxn = 1e6 + 5; const int maxm = 2e5 + 5; const ll mod = 1e9 + 7; int fa[maxn]; int _find(int x) { if(fa[x] == x)return x; return fa[x] = _find(fa[x]); } void _union(int x, int y) { int f1 = _find(x); int f2 = _find(y); if(f1 != f2)fa[f1] = f2; else fa[f2] = f1; } int mp[60][60]; int solve(int i, int j, int n) { int x1 = i / n; int y1 = i - x1 * n; int x2 = j / n; int y2 = j - x2 * n; if(y1 == 0) { y1 = n; --x1; } if(y2 == 0) { y2 = n; --x2; } // cout << x1 << y1 << x2 << y2 << endl; return (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2); } int main() { // freopen("233.in" , "r" , stdin); // freopen("233.out" , "w" , stdout); // ios_base::sync_with_stdio(0); // cin.tie(0);cout.tie(0); int n;scanf("%d", &n); int x1, x2, y1, y2; scanf("%d%d%d%d", &x1, &y1, &x2, &y2); for(int i = 1; i <= n; ++i) { getchar(); for(int j = 1; j <= n; ++j) mp[i][j] = (int)(getchar() - '0'); } for(int i = n + 1; i <= n + 1 + n * n; ++i)fa[i] = i; for(int i = 1; i <= n; ++i) { for(int j = 1; j <= n; ++j) { if(mp[i - 1][j] == mp[i][j] && i - 1 >= 1) _union(i * n + j, (i - 1) * n + j); if(mp[i + 1][j] == mp[i][j] && i + 1 <= n) _union(i * n + j, (i + 1) * n + j); if(mp[i][j + 1] == mp[i][j] && j + 1 <= n) _union(i * n + j, i * n + j + 1); if(mp[i][j - 1] == mp[i][j] && j - 1 >= 1) _union(i * n + j, i * n + j - 1); } } // for(int i = 1; i <=n; ++i) // { // for(int j = 1; j <= n; ++j) // cout << _find(i * n + j) << " "; // cout << endl; // } int s = _find(x1 * n + y1); int t = _find(x2 * n + y2); // cout << s << t << endl; int ans = inf; for(int i = n + 1; i <= n + 1 + n * n; ++i) { for(int j = 1 + n; j <= n + 1 + n * n; ++j) { if(_find(i) == s && _find(j) == t) { ans = min(ans, solve(i, j, n)); } } } cout << ans << endl; return 0; }
由一個環形的鐵路,,上面有n個車站,,每一個車站有一些糖果,,這些糖果要運到 \(b_i\) 那個車站,,,火車只能在一個車站拉上一個糖果,,可是能夠放下任意塊糖果,,,問你從這n個車站出發送完全部的糖果所需的最少的時間,,
每次只能上一個糖果,,最後下的糖果就是糖果數量最多的車站的,,找一個從這個車站出發花費最多的另外一個車站,,這樣把那個車站全部的糖果送完時其餘車站的糖果順帶也就送完了,,,
枚舉每個車站i,,對於車站i枚舉全部的其餘的車站,,求出全部的時間裏的最大值就是這個車站所用的時間了,,,
//cf #include <bits/stdc++.h> //#include <iostream> //#include <cstdio> //#include <cstdlib> //#include <string.h> //#include <algorithm> #define aaa cout<<233<<endl; #define endl '\n' #define pb push_back using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii; const int inf = 0x3f3f3f3f;//1061109567 const ll linf = 0x3f3f3f3f3f3f3f; const double eps = 1e-6; const double pi = 3.14159265358979; const int maxn = 1e6 + 5; const int maxm = 1e4 + 5; const ll mod = 1e9 + 7; struct node { int num; int mi; }node[maxm]; int n, m; int getdis(int i, int j) { //get the dis of i -> j if(i <= j)return j - i; else return n - i + j; } int solve(int loc) { //find the furthest and the most candies node int fur = loc; int num = node[loc].num; int ans = 0; int dis; for(int i = loc; i <= n; ++i) { if(node[i].mi == inf)continue; dis = getdis(loc, i) + (node[i].num - 1) * n + node[i].mi; ans = max(ans, dis); } for(int i = 1; i <= loc - 1; ++i) { if(node[i].mi == inf)continue; dis = getdis(loc, i) + (node[i].num - 1) * n + node[i].mi; ans = max(ans, dis); } // for(int i = loc; i <= n; ++i) // { // if(node[i].num >= num) // { // fur = i; // num = node[i].num; // } // } // for(int i = 1; i <= loc - 1; ++i) // { // if(node[i].num >= num) // { // fur = i; // num = node[i].num; // } // } // cout << fur << " "; // int ans = n * (node[fur].num - 1); // ans += getdis(loc, fur); // ans += getdis(fur, node[fur].mi); return ans; } int main() { // freopen("233.in" , "r" , stdin); // freopen("233.out" , "w" , stdout); // ios_base::sync_with_stdio(0); // cin.tie(0);cout.tie(0); cin >> n >> m; int a, b; for(int i = 1; i <= n; ++i)node[i].mi = inf; for(int i = 1; i <= n; ++i)node[i].num = 0; for(int i = 1; i <= m; ++i) { cin >> a >> b; ++node[a].num; if(getdis(a, b) <= node[a].mi) node[a].mi = getdis(a, b); } for(int i = 1; i <= n; ++i) cout << solve(i) << " "; cout << endl; // for(int i = 1; i <= n; ++i) // { // cout << i << " "; // cout << solve(i) << endl; // } return 0; }
一個數列求出最大的 區間和乘以區間長度,,
他給的算法當前面一段區間和出現負數就捨棄了,,沒有考慮長度對最後答案的影響,,,
題目要咱們構造一個數列,,使得這個數列的正確答案比它的作法算出的結果大k
能夠構造一個前面1998個都是0,,後面一個數是-p,一個時p + q,,,
這樣正確的答案就是 \(2000q\),,,他算出的答案就是 \(p + q\),,,
要大k,,就是 \(2000q - (p+q)=k\),,也就是 \(q= \frac{p+k}{1999}\) ,,,爲了保證p,q都是整數,,,那麼就設 \(p=1999-k\%1999\),,這樣算出的q就是整數,,,
//cf #include <bits/stdc++.h> //#include <iostream> //#include <cstdio> //#include <cstdlib> //#include <string.h> //#include <algorithm> #define aaa cout<<233<<endl; #define endl '\n' #define pb push_back using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii; const int inf = 0x3f3f3f3f;//1061109567 const ll linf = 0x3f3f3f3f3f3f3f; const double eps = 1e-6; const double pi = 3.14159265358979; const int maxn = 1e6 + 5; const int maxm = 1e4 + 5; const ll mod = 1e9 + 7; int main() { // freopen("233.in" , "r" , stdin); // freopen("233.out" , "w" , stdout); ios_base::sync_with_stdio(0); cin.tie(0);cout.tie(0); int k; cin >> k; cout << 2000 << endl; for(int i = 1; i <= 2000 - 2; ++i)cout << 0 << " "; int p = 1999 - k % 1999; cout << -p << " " << ((k + p) / 1999 + p) << endl; return 0; }
(end)