1. URL去重html
1 定義去重規則(被調度器調用並應用) 2 3 a. 內部會使用如下配置進行鏈接Redis 4 5 # REDIS_HOST = 'localhost' # 主機名 6 # REDIS_PORT = 6379 # 端口 7 # REDIS_URL = 'redis://user:pass@hostname:9001' # 鏈接URL(優先於以上配置) 8 # REDIS_PARAMS = {} # Redis鏈接參數 默認:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,}) 9 # REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定鏈接Redis的Python模塊 默認:redis.StrictRedis 10 # REDIS_ENCODING = "utf-8" # redis編碼類型 默認:'utf-8' 11 12 b. 去重規則經過redis的集合完成,集合的Key爲: 13 14 key = defaults.DUPEFILTER_KEY % {'timestamp': int(time.time())} 15 默認配置: 16 DUPEFILTER_KEY = 'dupefilter:%(timestamp)s' 17 18 c. 去重規則中將url轉換成惟一標示,而後在redis中檢查是否已經在集合中存在 19 20 from scrapy.utils import request 21 from scrapy.http import Request 22 23 req = Request(url='http://www.cnblogs.com/wupeiqi.html') 24 result = request.request_fingerprint(req) 25 print(result) # 8ea4fd67887449313ccc12e5b6b92510cc53675c 26 27 28 PS: 29 - URL參數位置不一樣時,計算結果一致; 30 - 默認請求頭不在計算範圍,include_headers能夠設置指定請求頭 31 示例: 32 from scrapy.utils import request 33 from scrapy.http import Request 34 35 req = Request(url='http://www.baidu.com?name=8&id=1',callback=lambda x:print(x),cookies={'k1':'vvvvv'}) 36 result = request.request_fingerprint(req,include_headers=['cookies',]) 37 38 print(result) 39 40 req = Request(url='http://www.baidu.com?id=1&name=8',callback=lambda x:print(x),cookies={'k1':666}) 41 42 result = request.request_fingerprint(req,include_headers=['cookies',]) 43 44 print(result) 45 46 """ 47 # Ensure all spiders share same duplicates filter through redis. 48 # DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
2. 調度器python
1 """ 2 調度器,調度器使用PriorityQueue(有序集合)、FifoQueue(列表)、LifoQueue(列表)進行保存請求,而且使用RFPDupeFilter對URL去重 3 4 a. 調度器 5 SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # 默認使用優先級隊列(默認),其餘:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表) 6 SCHEDULER_QUEUE_KEY = '%(spider)s:requests' # 調度器中請求存放在redis中的key 7 SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # 對保存到redis中的數據進行序列化,默認使用pickle 8 SCHEDULER_PERSIST = True # 是否在關閉時候保留原來的調度器和去重記錄,True=保留,False=清空 9 SCHEDULER_FLUSH_ON_START = True # 是否在開始以前清空 調度器和去重記錄,True=清空,False=不清空 10 SCHEDULER_IDLE_BEFORE_CLOSE = 10 # 去調度器中獲取數據時,若是爲空,最多等待時間(最後沒數據,未獲取到)。 11 SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter' # 去重規則,在redis中保存時對應的key 12 SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'# 去重規則對應處理的類 13 14 15 """ 16 # Enables scheduling storing requests queue in redis. 17 SCHEDULER = "scrapy_redis.scheduler.Scheduler" 18 19 # Default requests serializer is pickle, but it can be changed to any module 20 # with loads and dumps functions. Note that pickle is not compatible between 21 # python versions. 22 # Caveat: In python 3.x, the serializer must return strings keys and support 23 # bytes as values. Because of this reason the json or msgpack module will not 24 # work by default. In python 2.x there is no such issue and you can use 25 # 'json' or 'msgpack' as serializers. 26 # SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" 27 28 # Don't cleanup redis queues, allows to pause/resume crawls. 29 # SCHEDULER_PERSIST = True 30 31 # Schedule requests using a priority queue. (default) 32 # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' 33 34 # Alternative queues. 35 # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.FifoQueue' 36 # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.LifoQueue' 37 38 # Max idle time to prevent the spider from being closed when distributed crawling. 39 # This only works if queue class is SpiderQueue or SpiderStack, 40 # and may also block the same time when your spider start at the first time (because the queue is empty). 41 # SCHEDULER_IDLE_BEFORE_CLOSE = 10
3. 數據持久化redis
1 2. 定義持久化,爬蟲yield Item對象時執行RedisPipeline 2 3 a. 將item持久化到redis時,指定key和序列化函數 4 5 REDIS_ITEMS_KEY = '%(spider)s:items' 6 REDIS_ITEMS_SERIALIZER = 'json.dumps' 7 8 b. 使用列表保存item數據
4. 起始URL相關json
1 """ 2 起始URL相關 3 4 a. 獲取起始URL時,去集合中獲取仍是去列表中獲取?True,集合;False,列表 5 REDIS_START_URLS_AS_SET = False # 獲取起始URL時,若是爲True,則使用self.server.spop;若是爲False,則使用self.server.lpop 6 b. 編寫爬蟲時,起始URL從redis的Key中獲取 7 REDIS_START_URLS_KEY = '%(name)s:start_urls' 8 9 """ 10 # If True, it uses redis' ``spop`` operation. This could be useful if you 11 # want to avoid duplicates in your start urls list. In this cases, urls must 12 # be added via ``sadd`` command or you will get a type error from redis. 13 # REDIS_START_URLS_AS_SET = False 14 15 # Default start urls key for RedisSpider and RedisCrawlSpider. 16 # REDIS_START_URLS_KEY = '%(name)s:start_urls'
1 # DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter" 2 # 3 # 4 # from scrapy_redis.scheduler import Scheduler 5 # from scrapy_redis.queue import PriorityQueue 6 # SCHEDULER = "scrapy_redis.scheduler.Scheduler" 7 # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # 默認使用優先級隊列(默認),其餘:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表) 8 # SCHEDULER_QUEUE_KEY = '%(spider)s:requests' # 調度器中請求存放在redis中的key 9 # SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # 對保存到redis中的數據進行序列化,默認使用pickle 10 # SCHEDULER_PERSIST = True # 是否在關閉時候保留原來的調度器和去重記錄,True=保留,False=清空 11 # SCHEDULER_FLUSH_ON_START = False # 是否在開始以前清空 調度器和去重記錄,True=清空,False=不清空 12 # SCHEDULER_IDLE_BEFORE_CLOSE = 10 # 去調度器中獲取數據時,若是爲空,最多等待時間(最後沒數據,未獲取到)。 13 # SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter' # 去重規則,在redis中保存時對應的key 14 # SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'# 去重規則對應處理的類 15 # 16 # 17 # 18 # REDIS_HOST = '10.211.55.13' # 主機名 19 # REDIS_PORT = 6379 # 端口 20 # # REDIS_URL = 'redis://user:pass@hostname:9001' # 鏈接URL(優先於以上配置) 21 # # REDIS_PARAMS = {} # Redis鏈接參數 默認:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,}) 22 # # REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定鏈接Redis的Python模塊 默認:redis.StrictRedis 23 # REDIS_ENCODING = "utf-8" # redis編碼類型 默認:'utf-8' 24 25 配置文件
1 import scrapy 2 3 4 class ChoutiSpider(scrapy.Spider): 5 name = "chouti" 6 allowed_domains = ["chouti.com"] 7 start_urls = ( 8 'http://www.chouti.com/', 9 ) 10 11 def parse(self, response): 12 for i in range(0,10): 13 yield