1、導出工具mongoexportmongodb
Mongodb中的mongoexport工具能夠把一個collection導出成JSON格式或CSV格式的文件。能夠經過參數指定導出的數據項,也能夠根據指定的條件導出數據。mongoexport具體用法以下所示:數據庫
[root@localhost mongodb]# ./bin/mongoexport --help Export MongoDB data to CSV, TSV or JSON files. options: --help produce help message -v [ --verbose ] be more verbose (include multiple times for more verbosity e.g. -vvvvv) --version print the program's version and exit -h [ --host ] arg mongo host to connect to ( <set name>/s1,s2 for sets) --port arg server port. Can also use --host hostname:port --ipv6 enable IPv6 support (disabled by default) -u [ --username ] arg username -p [ --password ] arg password --dbpath arg directly access mongod database files in the given path, instead of connecting to a mongod server - needs to lock the data directory, so cannot be used if a mongod is currently accessing the same path --directoryperdb if dbpath specified, each db is in a separate directory --journal enable journaling -d [ --db ] arg database to use -c [ --collection ] arg collection to use (some commands) -f [ --fields ] arg comma separated list of field names e.g. -f name,age --fieldFile arg file with fields names - 1 per line -q [ --query ] arg query filter, as a JSON string --csv export to csv instead of json -o [ --out ] arg output file; if not specified, stdout is used --jsonArray output to a json array rather than one object per line -k [ --slaveOk ] arg (=1) use secondaries for export if available, default true
參數說明:json
-h:指明數據庫宿主機的IP工具
-u:指明數據庫的用戶名ui
-p:指明數據庫的密碼this
-d:指明數據庫的名字spa
-c:指明collection的名字code
-f:指明要導出那些列server
-o:指明到要導出的文件名blog
-q:指明導出數據的過濾條件
實例:test庫中存在着一個students集合,集合中數據以下:
> db.students.find() { "_id" : ObjectId("5031143350f2481577ea81e5"), "classid" : 1, "age" : 20, "name" : "kobe" } { "_id" : ObjectId("5031144a50f2481577ea81e6"), "classid" : 1, "age" : 23, "name" : "nash" } { "_id" : ObjectId("5031145a50f2481577ea81e7"), "classid" : 2, "age" : 18, "name" : "james" } { "_id" : ObjectId("5031146a50f2481577ea81e8"), "classid" : 2, "age" : 19, "name" : "wade" } { "_id" : ObjectId("5031147450f2481577ea81e9"), "classid" : 2, "age" : 19, "name" : "bosh" } { "_id" : ObjectId("5031148650f2481577ea81ea"), "classid" : 2, "age" : 25, "name" : "allen" } { "_id" : ObjectId("5031149b50f2481577ea81eb"), "classid" : 1, "age" : 19, "name" : "howard" } { "_id" : ObjectId("503114a750f2481577ea81ec"), "classid" : 1, "age" : 22, "name" : "paul" } { "_id" : ObjectId("503114cd50f2481577ea81ed"), "classid" : 2, "age" : 24, "name" : "shane" }
由上能夠看出文檔中存在着3個字段:classid、age、name
1.直接導出數據到文件中
[root@localhost mongodb]# ./bin/mongoexport -d test -c students -o students.dat connected to: 127.0.0.1 exported 9 records
命令執行完後使用ll命令查看,發現目錄下生成了一個students.dat的文件
-rw-r--r-- 1 root root 869 Aug 21 00:05 students.dat
查看該文件信息,具體信息以下:
[root@localhost mongodb]# cat students.dat { "_id" : { "$oid" : "5031143350f2481577ea81e5" }, "classid" : 1, "age" : 20, "name" : "kobe" } { "_id" : { "$oid" : "5031144a50f2481577ea81e6" }, "classid" : 1, "age" : 23, "name" : "nash" } { "_id" : { "$oid" : "5031145a50f2481577ea81e7" }, "classid" : 2, "age" : 18, "name" : "james" } { "_id" : { "$oid" : "5031146a50f2481577ea81e8" }, "classid" : 2, "age" : 19, "name" : "wade" } { "_id" : { "$oid" : "5031147450f2481577ea81e9" }, "classid" : 2, "age" : 19, "name" : "bosh" } { "_id" : { "$oid" : "5031148650f2481577ea81ea" }, "classid" : 2, "age" : 25, "name" : "allen" } { "_id" : { "$oid" : "5031149b50f2481577ea81eb" }, "classid" : 1, "age" : 19, "name" : "howard" } { "_id" : { "$oid" : "503114a750f2481577ea81ec" }, "classid" : 1, "age" : 22, "name" : "paul" } { "_id" : { "$oid" : "503114cd50f2481577ea81ed" }, "classid" : 2, "age" : 24, "name" : "shane" }
參數說明:
-d:指明使用的庫,本例中爲test
-c:指明要導出的集合,本例中爲students
-o:指明要導出的文件名,本例中爲students.dat
從上面的結果能夠看出,咱們在導出數據時沒有顯示指定導出樣式 ,默認導出了JSON格式的數據。若是咱們須要導出CSV格式的數據,則須要使用--csv參數,具體以下所示:
[root@localhost mongodb]# ./bin/mongoexport -d test -c students --csv -f classid,name,age -o students_csv.dat connected to: 127.0.0.1 exported 9 records [root@localhost mongodb]# cat students_csv.dat classid,name,age 1.0,"kobe",20.0 1.0,"nash",23.0 2.0,"james",18.0 2.0,"wade",19.0 2.0,"bosh",19.0 2.0,"allen",25.0 1.0,"howard",19.0 1.0,"paul",22.0 2.0,"shane",24.0 [root@localhost mongodb]#
參數說明:
-csv:指明要導出爲csv格式
-f:指明須要導出classid、name、age這3列的數據
由上面結果能夠看出,mongoexport成功地將數據根據csv格式導出到了students_csv.dat文件中。
2、導入工具mongoimport
Mongodb中的mongoimport工具能夠把一個特定格式文件中的內容導入到指定的collection中。該工具能夠導入JSON格式數據,也能夠導入CSV格式數據。具體使用以下所示:
[root@localhost mongodb]# ./bin/mongoimport --help options: --help produce help message -v [ --verbose ] be more verbose (include multiple times for more verbosity e.g. -vvvvv) --version print the program's version and exit -h [ --host ] arg mongo host to connect to ( <set name>/s1,s2 for sets) --port arg server port. Can also use --host hostname:port --ipv6 enable IPv6 support (disabled by default) -u [ --username ] arg username -p [ --password ] arg password --dbpath arg directly access mongod database files in the given path, instead of connecting to a mongod server - needs to lock the data directory, so cannot be used if a mongod is currently accessing the same path --directoryperdb if dbpath specified, each db is in a separate directory --journal enable journaling -d [ --db ] arg database to use -c [ --collection ] arg collection to use (some commands) -f [ --fields ] arg comma separated list of field names e.g. -f name,age --fieldFile arg file with fields names - 1 per line --ignoreBlanks if given, empty fields in csv and tsv will be ignored --type arg type of file to import. default: json (json,csv,tsv) --file arg file to import from; if not specified stdin is used --drop drop collection first --headerline CSV,TSV only - use first line as headers --upsert insert or update objects that already exist --upsertFields arg comma-separated fields for the query part of the upsert. You should make sure this is indexed --stopOnError stop importing at first error rather than continuing --jsonArray load a json array, not one item per line. Currently limited to 4MB.
參數說明:
-h:指明數據庫宿主機的IP
-u:指明數據庫的用戶名
-p:指明數據庫的密碼
-d:指明數據庫的名字
-c:指明collection的名字
-f:指明要導入那些列
示例:先刪除students中的數據,並驗證
> db.students.remove() > db.students.find() >
而後再導入上面導出的students.dat文件中的內容
[root@localhost mongodb]# ./bin/mongoimport -d test -c students students.dat connected to: 127.0.0.1 imported 9 objects [root@localhost mongodb]#
參數說明:
-d:指明數據庫名,本例中爲test
-c:指明collection名,本例中爲students
students.dat:導入的文件名
查詢students集合中的數據
> db.students.find() { "_id" : ObjectId("5031143350f2481577ea81e5"), "classid" : 1, "age" : 20, "name" : "kobe" } { "_id" : ObjectId("5031144a50f2481577ea81e6"), "classid" : 1, "age" : 23, "name" : "nash" } { "_id" : ObjectId("5031145a50f2481577ea81e7"), "classid" : 2, "age" : 18, "name" : "james" } { "_id" : ObjectId("5031146a50f2481577ea81e8"), "classid" : 2, "age" : 19, "name" : "wade" } { "_id" : ObjectId("5031147450f2481577ea81e9"), "classid" : 2, "age" : 19, "name" : "bosh" } { "_id" : ObjectId("5031148650f2481577ea81ea"), "classid" : 2, "age" : 25, "name" : "allen" } { "_id" : ObjectId("5031149b50f2481577ea81eb"), "classid" : 1, "age" : 19, "name" : "howard" } { "_id" : ObjectId("503114a750f2481577ea81ec"), "classid" : 1, "age" : 22, "name" : "paul" } { "_id" : ObjectId("503114cd50f2481577ea81ed"), "classid" : 2, "age" : 24, "name" : "shane" } >
證實數據導入成功
上面演示的是導入JSON格式的文件中的內容,若是要導入CSV格式文件中的內容,則須要經過--type參數指定導入格式,具體以下所示:
先刪除數據
> db.students.remove() > db.students.find() >
再導入以前導出的students_csv.dat文件
[root@localhost mongodb]# ./bin/mongoimport -d test -c students --type csv --headerline --file students_csv.dat connected to: 127.0.0.1 imported 10 objects [root@localhost mongodb]#
參數說明:
-type:指明要導入的文件格式
-headerline:指明第一行是列名,不須要導入
-file:指明要導入的文件
查詢students集合,驗證導入是否成功:
> db.students.find() { "_id" : ObjectId("503266029355c632cd118ad8"), "classid" : 1, "name" : "kobe", "age" : 20 } { "_id" : ObjectId("503266029355c632cd118ad9"), "classid" : 1, "name" : "nash", "age" : 23 } { "_id" : ObjectId("503266029355c632cd118ada"), "classid" : 2, "name" : "james", "age" : 18 } { "_id" : ObjectId("503266029355c632cd118adb"), "classid" : 2, "name" : "wade", "age" : 19 } { "_id" : ObjectId("503266029355c632cd118adc"), "classid" : 2, "name" : "bosh", "age" : 19 } { "_id" : ObjectId("503266029355c632cd118add"), "classid" : 2, "name" : "allen", "age" : 25 } { "_id" : ObjectId("503266029355c632cd118ade"), "classid" : 1, "name" : "howard", "age" : 19 } { "_id" : ObjectId("503266029355c632cd118adf"), "classid" : 1, "name" : "paul", "age" : 22 } { "_id" : ObjectId("503266029355c632cd118ae0"), "classid" : 2, "name" : "shane", "age" : 24 } >