LeetCode 307. 區域和檢索 - 數組可修改

地址 https://leetcode-cn.com/problems/range-sum-query-mutable/node

題目描述
給定一個整數數組  nums,求出數組從索引 i 到 j  (i ≤ j) 範圍內元素的總和,包含 i,  j 兩點。算法

update(i, val) 函數能夠經過將下標爲 i 的數值更新爲 val,從而對數列進行修改。數組

示例:

Given nums = [1, 3, 5]

sumRange(0, 2) -> 9
update(1, 2)
sumRange(0, 2) -> 8
說明:

數組僅能夠在 update 函數下進行修改。
你能夠假設 update 函數與 sumRange 函數的調用次數是均勻分佈的。

算法1
區間求和 天然使用 線段樹 或者線段數組
這裏以線段樹爲例
以 空間換時間 記錄線段之間的和 最大最小值等
因爲是樹 即便其中一部分元素改變或者某一個元素改變 更改記錄也只是log(n)的複雜度函數

class SegmentTreeNode {
public:
    SegmentTreeNode(int start,int end,int sum,
        SegmentTreeNode* left = nullptr,
        SegmentTreeNode* right = nullptr):
        start(start),
        end(end),
        sum(sum),
        left(left),
        right(right){}
    SegmentTreeNode(const SegmentTreeNode&) = delete;
    SegmentTreeNode& operator=(const SegmentTreeNode&) = delete;
    ~SegmentTreeNode() {
        delete left;
        delete right;
        left = right = nullptr;
    }


    int start;
    int  end;
    int sum;
    SegmentTreeNode* left;
    SegmentTreeNode* right;
};

class NumArray {
public:
    NumArray(vector<int> nums) {
        nums_.swap(nums);
        if (!nums_.empty())
            root_.reset(buildTree(0, nums_.size() - 1));
    }

    void update(int i, int val) {
        updateTree(root_.get(), i, val);
    }

    int sumRange(int i, int j) {
        return sumRange(root_.get(), i, j);
    }
private:
    vector<int> nums_;
    std::unique_ptr<SegmentTreeNode> root_;

    SegmentTreeNode* buildTree(int start, int end) {
        if (start == end) {
            return new SegmentTreeNode(start, end, nums_[start]);
        }
        int mid = start + (end - start) / 2;
        auto left = buildTree(start, mid);
        auto right = buildTree(mid + 1, end);
        auto node = new SegmentTreeNode(start, end, left->sum + right->sum,
            left, right);

        return node;
    }

    void updateTree(SegmentTreeNode* root, int i, int val) {
        if (root->start == i && root->end == i) {
            root->sum = val;
            return;
        }
        int mid = root->start + (root->end - root->start) / 2;
        if (i <= mid) {
            updateTree(root->left, i, val);
        }
        else {
            updateTree(root->right, i, val);
        }
        root->sum = root->left->sum + root->right->sum;
    }

    int sumRange(SegmentTreeNode* root, int i, int j) {
        if (i == root->start && j == root->end) {
            return root->sum;
        }
        int mid = root->start + (root->end - root->start) / 2;
        if (j <= mid) {
            return sumRange(root->left, i, j);
        }
        else if (i > mid) {
            return sumRange(root->right, i, j);
        }
        else {
            return sumRange(root->left, i, mid) + sumRange(root->right, mid + 1, j);
        }
    }
};
相關文章
相關標籤/搜索