在Android系統中能夠所是無處不Binder,Binder傳輸在每時每刻都發生着。不少狀況下,一個進程中都不會只存在一個獨立的Binder傳輸,常常是併發多個Binder傳輸,並且會存在Binder嵌套。尤爲像system_server這種重要的進程Binder傳輸會更多。在系統發生問題時,若是追蹤到system_server,會發現大部分狀況都是在Binder傳輸中。但不管有多少Binder傳輸或多複雜的Binder嵌套,最終都是經過兩種Binder傳輸實現的:同步傳輸和異步傳輸。這裏試圖經過最簡單的傳輸來解釋Binder通訊流程。node
Binder傳輸中最多見的就是同步傳輸。同步傳輸中,IPC通訊的發起端須要等到對端處理完消息才能繼續。一個完整的同步傳輸以下圖所示。
跳過Binder設備初始化的過程,直接看傳輸過程。客戶端經過ioctl的BINDER_WRITE_READ發送BC_TRANSACTION命令到Binder驅動。android
drivers/staging/android/binder.c static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { ...... switch (cmd) { case BINDER_WRITE_READ: { struct binder_write_read bwr; ...... // 須要寫數據 if (bwr.write_size > 0) { ret = binder_thread_write(proc, thread, bwr.write_buffer, bwr.write_size, &bwr.write_consumed); trace_binder_write_done(ret); if (ret < 0) { bwr.read_consumed = 0; if (copy_to_user(ubuf, &bwr, sizeof(bwr))) ret = -EFAULT; goto err; } } // 須要讀數據 if (bwr.read_size > 0) { ret = binder_thread_read(proc, thread, bwr.read_buffer, bwr.read_size, &bwr.read_consumed, filp->f_flags & O_NONBLOCK); trace_binder_read_done(ret); if (!list_empty(&proc->todo)) wake_up_interruptible(&proc->wait); if (ret < 0) { if (copy_to_user(ubuf, &bwr, sizeof(bwr))) ret = -EFAULT; goto err; } } ...... break; } ......
發起Binder傳輸時,須要寫入BC_TRANSACTION命令,而後等待命令返回。cookie
drivers/staging/android/binder.c static int binder_thread_write(struct binder_proc *proc, struct binder_thread *thread, binder_uintptr_t binder_buffer, size_t size, binder_size_t *consumed) { ...... case BC_TRANSACTION: case BC_REPLY: { struct binder_transaction_data tr; if (copy_from_user(&tr, ptr, sizeof(tr))) return -EFAULT; ptr += sizeof(tr); binder_transaction(proc, thread, &tr, cmd == BC_REPLY); break; } ...... }
BC_TRANSACTION和BC_REPLY都會調用binder_transaction(),區別在因而否設置reply。binder_transaction()也是寫數據的核心函數。函數很長,邏輯不少,儘可能分析一下。併發
drivers/staging/android/binder.c static void binder_transaction(struct binder_proc *proc, struct binder_thread *thread, struct binder_transaction_data *tr, int reply) { ...... if (reply) { ...... } else { if (tr->target.handle) { // 根據handle找到相應的binder實體 struct binder_ref *ref; ref = binder_get_ref(proc, tr->target.handle, true); ...... target_node = ref->node; } else { // handle爲0時爲service manager的binder實體 target_node = binder_context_mgr_node; ...... } e->to_node = target_node->debug_id; // binder實體的binder_proc target_proc = target_node->proc; ...... if (!(tr->flags & TF_ONE_WAY) && thread->transaction_stack) { struct binder_transaction *tmp; tmp = thread->transaction_stack; ...... // 若是是同步傳輸,尋找是否傳輸棧中是否有來自對端的傳輸,若是有就使用對端線程處理傳輸 while (tmp) { if (tmp->from && tmp->from->proc == target_proc) target_thread = tmp->from; tmp = tmp->from_parent; } } } // 找到對端線程這使用線程todo list,不然使用進程todo list if (target_thread) { e->to_thread = target_thread->pid; target_list = &target_thread->todo; target_wait = &target_thread->wait; } else { target_list = &target_proc->todo; target_wait = &target_proc->wait; } e->to_proc = target_proc->pid; // 分配binder transaction t = kzalloc(sizeof(*t), GFP_KERNEL); ...... // 分配binder_work用於處理傳輸完成 tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL); ...... // 同步的非reply傳輸,設置當前線程爲from if (!reply && !(tr->flags & TF_ONE_WAY)) t->from = thread; else t->from = NULL; t->sender_euid = proc->tsk->cred->euid; // 設置傳輸的目標進程和線程 t->to_proc = target_proc; t->to_thread = target_thread; t->code = tr->code; t->flags = tr->flags; t->priority = task_nice(current); // 從目標進程中分配傳輸空間 t->buffer = binder_alloc_buf(target_proc, tr->data_size, tr->offsets_size, !reply && (t->flags & TF_ONE_WAY)); ...... t->buffer->allow_user_free = 0; t->buffer->debug_id = t->debug_id; t->buffer->transaction = t; t->buffer->target_node = target_node; // 增長binder實體的引用計數 if (target_node) binder_inc_node(target_node, 1, 0, NULL); offp = (binder_size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *))); // 拷貝用戶數據到binder實體的傳輸空間中 if (copy_from_user(t->buffer->data, (const void __user *)(uintptr_t) tr->data.ptr.buffer, tr->data_size)) { ...... } // 拷貝用戶數據的flat_binder_object對象信息 if (copy_from_user(offp, (const void __user *)(uintptr_t) tr->data.ptr.offsets, tr->offsets_size)) { ...... } ...... off_end = (void *)offp + tr->offsets_size; off_min = 0; // 處理flat_binder_object對象信息 for (; offp < off_end; offp++) { struct flat_binder_object *fp; ...... fp = (struct flat_binder_object *)(t->buffer->data + *offp); off_min = *offp + sizeof(struct flat_binder_object); switch (fp->type) { // 類型爲binder實體,用於server註冊 case BINDER_TYPE_BINDER: case BINDER_TYPE_WEAK_BINDER: { struct binder_ref *ref; // 若是找不到binder實體就建立一個 struct binder_node *node = binder_get_node(proc, fp->binder); if (node == NULL) { node = binder_new_node(proc, fp->binder, fp->cookie); ...... } ...... // 在目標進程中建立引用 ref = binder_get_ref_for_node(target_proc, node); ...... // 修改binder對象的類型爲handle if (fp->type == BINDER_TYPE_BINDER) fp->type = BINDER_TYPE_HANDLE; else fp->type = BINDER_TYPE_WEAK_HANDLE; fp->binder = 0; // 將引用的handle賦值給對象 fp->handle = ref->desc; fp->cookie = 0; // 增長引用計數 binder_inc_ref(ref, fp->type == BINDER_TYPE_HANDLE, &thread->todo); ...... } break; // 類型爲binder引用,client向server傳輸 case BINDER_TYPE_HANDLE: case BINDER_TYPE_WEAK_HANDLE: { // 獲取當前進程中的binder引用 struct binder_ref *ref = binder_get_ref( proc, fp->handle, fp->type == BINDER_TYPE_HANDLE); ...... if (ref->node->proc == target_proc) { // 若是binder傳輸發生在同一進程中則直接使用binder實體 if (fp->type == BINDER_TYPE_HANDLE) fp->type = BINDER_TYPE_BINDER; else fp->type = BINDER_TYPE_WEAK_BINDER; fp->binder = ref->node->ptr; fp->cookie = ref->node->cookie; binder_inc_node(ref->node, fp->type == BINDER_TYPE_BINDER, 0, NULL); ...... } else { struct binder_ref *new_ref; // 在目標進程中建立binder引用 new_ref = binder_get_ref_for_node(target_proc, ref->node); ...... fp->binder = 0; fp->handle = new_ref->desc; fp->cookie = 0; binder_inc_ref(new_ref, fp->type == BINDER_TYPE_HANDLE, NULL); ...... } } break; // 類型爲文件描述符,用於共享文件或內存 case BINDER_TYPE_FD: { ...... } break; ...... } } if (reply) { ...... } else if (!(t->flags & TF_ONE_WAY)) { // 當前線程的傳輸入棧 t->need_reply = 1; t->from_parent = thread->transaction_stack; thread->transaction_stack = t; } else { // 異步傳輸使用aync todo list if (target_node->has_async_transaction) { target_list = &target_node->async_todo; target_wait = NULL; } else target_node->has_async_transaction = 1; } // 將傳輸添加到目標隊列中 t->work.type = BINDER_WORK_TRANSACTION; list_add_tail(&t->work.entry, target_list); // 將傳輸完成添加到當前線程todo隊列中 tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; list_add_tail(&tcomplete->entry, &thread->todo); // 喚醒目標線程或進程 if (target_wait) wake_up_interruptible(target_wait); return; ...... }
BC_TRANSACTION簡單來講流程以下,異步
Client在執行BINDER_WRITE_READ時,先經過binder_thread_write()寫數據,將BINDER_WORK_TRANSACTION_COMPLETE放入工做隊列。緊接着就執行binder_thread_read()讀取返回數據。這裏會將命令BR_TRANSACTION_COMPLETE返回給Client線程。async
drivers/staging/android/binder.c static int binder_thread_read(struct binder_proc *proc, struct binder_thread *thread, binder_uintptr_t binder_buffer, size_t size, binder_size_t *consumed, int non_block) { ...... // 第一次讀時,插入命令BR_NOOP返回給用戶 if (*consumed == 0) { if (put_user(BR_NOOP, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); } retry: // 當前線程沒有傳輸而且todo隊列爲空時,處理進程的工做隊列 wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo); ...... thread->looper |= BINDER_LOOPER_STATE_WAITING; // 若是處理進程工做隊列,則當前線程爲空閒線程 if (wait_for_proc_work) proc->ready_threads++; ...... // 等待進程或線程工做隊列被喚醒 if (wait_for_proc_work) { ...... ret = wait_event_freezable_exclusive(proc->wait, binder_has_proc_work(proc, thread)); } else { ...... ret = wait_event_freezable(thread->wait, binder_has_thread_work(thread)); } ...... // 喚醒後,開始處理傳輸,空閒線程減1 if (wait_for_proc_work) proc->ready_threads--; thread->looper &= ~BINDER_LOOPER_STATE_WAITING; ...... while (1) { ...... // 優先處理線程工做隊列,再處理進程工做隊列 if (!list_empty(&thread->todo)) w = list_first_entry(&thread->todo, struct binder_work, entry); else if (!list_empty(&proc->todo) && wait_for_proc_work) w = list_first_entry(&proc->todo, struct binder_work, entry); else { if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */ goto retry; break; } ...... switch (w->type) { ...... case BINDER_WORK_TRANSACTION_COMPLETE: { // 發送命令BR_TRANSACTION_COMPLETE給用戶 cmd = BR_TRANSACTION_COMPLETE; if (put_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); ...... list_del(&w->entry); kfree(w); binder_stats_deleted(BINDER_STAT_TRANSACTION_COMPLETE); } break; ...... if (!t) continue; ...... }
Server端線程啓動後就調用talkWithDriver()等待讀取數據。Binder驅動處理Client發送的BC_TRANSACTION命令後,會喚醒Server線程。Server線程讀取數據進行處理一樣是在binder_thread_read()中完成的。函數
drivers/staging/android/binder.c static int binder_thread_read(struct binder_proc *proc, struct binder_thread *thread, binder_uintptr_t binder_buffer, size_t size, binder_size_t *consumed, int non_block) { ...... while (1) { switch (w->type) { // binder_transaction()將工做BINDER_WORK_TRANSACTION加入隊列後喚醒目標進程 case BINDER_WORK_TRANSACTION: { t = container_of(w, struct binder_transaction, work); } break; ...... // 只有BINDER_WORK_TRANSACTION取出傳輸事件,因此能夠繼續執行 if (!t) continue; BUG_ON(t->buffer == NUL); // target_node存在時代表是BC_TRANSACTION產生的工做事件,須要回覆BR_TRANSACTION。 // 不然是BC_REPLY產生的工做事件,回覆BR_REPLY if (t->buffer->target_node) { struct binder_node *target_node = t->buffer->target_node; tr.target.ptr = target_node->ptr; tr.cookie = target_node->cookie; t->saved_priority = task_nice(current); if (t->priority < target_node->min_priority && !(t->flags & TF_ONE_WAY)) binder_set_nice(t->priority); else if (!(t->flags & TF_ONE_WAY) || t->saved_priority > target_node->min_priority) binder_set_nice(target_node->min_priority); cmd = BR_TRANSACTION; } else { tr.target.ptr = 0; tr.cookie = 0; cmd = BR_REPLY; } tr.code = t->code; tr.flags = t->flags; tr.sender_euid = from_kuid(current_user_ns(), t->sender_euid); // 同步傳輸時,sender_pid爲調用進程的pid。異步傳輸時爲0。 if (t->from) { struct task_struct *sender = t->from->proc->tsk; tr.sender_pid = task_tgid_nr_ns(sender, task_active_pid_ns(current)); } else { tr.sender_pid = 0; } ...... // 將數據拷貝到用戶空間 if (put_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); if (copy_to_user(ptr, &tr, sizeof(tr))) return -EFAULT; ptr += sizeof(tr); ...... // 從隊列中移除當前工做事件 list_del(&t->work.entry); t->buffer->allow_user_free = 1; if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) { // 同步傳輸時,命令爲BR_TRANSACTION的狀況下,將工做事件入棧 t->to_parent = thread->transaction_stack; t->to_thread = thread; thread->transaction_stack = t; } else { // 其餘狀況下,代表傳輸已經完成,釋放工做事件 t->buffer->transaction = NULL; kfree(t); binder_stats_deleted(BINDER_STAT_TRANSACTION); } break; } ...... }
BR_REPLY也是一樣的流程,區別在於發送BR_REPLY意味着傳輸已經完成,能夠釋放工做事件。oop
Server端接收到BR_TRANSACTION命令後,取出buffer進行處理,完成後會發送BC_REPLY給Binder驅動。ui
frameworks/native/libs/binder/IPCThreadState.cpp status_t IPCThreadState::executeCommand(int32_t cmd) { ...... case BR_TRANSACTION: { // 取出傳輸數據 binder_transaction_data tr; result = mIn.read(&tr, sizeof(tr)); ...... Parcel reply; ...... // BBinder對數據進行解析 if (tr.target.ptr) { sp<BBinder> b((BBinder*)tr.cookie); error = b->transact(tr.code, buffer, &reply, tr.flags); } else { error = the_context_object->transact(tr.code, buffer, &reply, tr.flags); } if ((tr.flags & TF_ONE_WAY) == 0) { LOG_ONEWAY("Sending reply to %d!", mCallingPid); if (error < NO_ERROR) reply.setError(error); // 同步傳輸須要發送BC_REPLY sendReply(reply, 0); } else { LOG_ONEWAY("NOT sending reply to %d!", mCallingPid); } ...... } break; ...... }
BC_REPLY也是經過binder_transaction()處理,只是須要設置參數reply。下面只分析與以前不一樣的地方。this
drivers/staging/android/binder.c static void binder_transaction(struct binder_proc *proc, struct binder_thread *thread, struct binder_transaction_data *tr, int reply) { ...... if (reply) { // 從當前線程中出棧 in_reply_to = thread->transaction_stack; ...... thread->transaction_stack = in_reply_to->to_parent; // 目標線程爲發起端線程 target_thread = in_reply_to->from; ...... target_proc = target_thread->proc; } else { ...... } if (target_thread) { e->to_thread = target_thread->pid; target_list = &target_thread->todo; target_wait = &target_thread->wait; } else { ...... } ...... // reply傳輸的from爲空 if (!reply && !(tr->flags & TF_ONE_WAY)) t->from = thread; else t->from = NULL; ...... if (reply) { // 從目標線程中出棧 binder_pop_transaction(target_thread, in_reply_to); } else if (!(t->flags & TF_ONE_WAY)) { ...... } else { ...... } t->work.type = BINDER_WORK_TRANSACTION; list_add_tail(&t->work.entry, target_list); tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; list_add_tail(&tcomplete->entry, &thread->todo); if (target_wait) wake_up_interruptible(target_wait); return; ...... }
binder_transaction()執行完BC_REPLY後一樣是加入工做隊列,喚醒target。BINDER_WORK_TRANSACTION_COMPLETE會將BR_TRANSACTION_COMPLETE返回給當前線程,也就是Server端。BINDER_WORK_TRANSACTION由target處理,這時的target爲Client端。根據上面分析,驅動將返回BR_REPLY給Client端。
Binder的每一次傳輸,不管是從Client到Sever仍是Server到Client,在對端接收到數據並處理完成後,都會經過BC_FREE_BUFFER來釋放傳輸空間。在同步傳輸中會包含兩次傳輸,由Client發出的BC_TRANSACTION和由Server發出的BC_REPLY。
在BC_TRANSACTION中,Server端接收到BR_TRANSACTION命令開始處理Binder數據,處理完成後就會發出BC_FREE_BUFFER來釋放buffer。這個釋放命令不是直接發出的,是經過Parcel的釋放函數完成的。將freeBuffer設置爲Parcel實例buffer的釋放函數,在buffer析構時會調用釋放函數freeBuffer。
frameworks/native/libs/binder/IPCThreadState.cpp status_t IPCThreadState::executeCommand(int32_t cmd) { ...... case BR_TRANSACTION: { binder_transaction_data tr; result = mIn.read(&tr, sizeof(tr)); ...... Parcel buffer; // 設置buffer的釋放函數爲freeBuffer buffer.ipcSetDataReference( reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(binder_size_t), freeBuffer, this); ...... sp<BBinder> b((BBinder*)tr.cookie); error = b->transact(tr.code, buffer, &reply, tr.flags); ...... } break; ...... } ...... void IPCThreadState::freeBuffer(Parcel* parcel, const uint8_t* data, size_t /*dataSize*/, const binder_size_t* /*objects*/, size_t /*objectsSize*/, void* /*cookie*/) { ...... if (parcel != NULL) parcel->closeFileDescriptors(); // 發送BC_FREE_BUFFER命令 IPCThreadState* state = self(); state->mOut.writeInt32(BC_FREE_BUFFER); state->mOut.writePointer((uintptr_t)data); }
在BC_REPLY中,Client端接收到BR_REPLY會將freeBuffer設置爲釋放函數或直接調用freeBuffer。
frameworks/native/libs/binder/IPCThreadState.cpp status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult) { int32_t cmd; int32_t err; while (1) { ...... case BR_REPLY: { binder_transaction_data tr; err = mIn.read(&tr, sizeof(tr)); ALOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY"); if (err != NO_ERROR) goto finish; if (reply) { if ((tr.flags & TF_STATUS_CODE) == 0) { // 設置freeBuffer爲釋放函數 reply->ipcSetDataReference( reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(binder_size_t), freeBuffer, this); } else { // 發生錯誤時直接調用freeBuffer err = *reinterpret_cast<const status_t*>(tr.data.ptr.buffer); freeBuffer(NULL, reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(binder_size_t), this); } } else { freeBuffer(NULL, reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(binder_size_t), this); continue; } } goto finish; ...... } ......
FreeBuffer()發送BC_FREE_BUFFER命令給Binder驅動。
drivers/staging/android/binder.c static void binder_free_buf(struct binder_proc *proc, struct binder_buffer *buffer) { size_t size, buffer_size; // 獲取buffer的大小 buffer_size = binder_buffer_size(proc, buffer); size = ALIGN(buffer->data_size, sizeof(void *)) + ALIGN(buffer->offsets_size, sizeof(void *)); ...... // 更新異步傳輸的free_async_space if (buffer->async_transaction) { proc->free_async_space += size + sizeof(struct binder_buffer); ...... } // 釋放物理內存 binder_update_page_range(proc, 0, (void *)PAGE_ALIGN((uintptr_t)buffer->data), (void *)(((uintptr_t)buffer->data + buffer_size) & PAGE_MASK), NULL); // 將buffer從allocated_buffers樹上擦除 rb_erase(&buffer->rb_node, &proc->allocated_buffers); buffer->free = 1; // 向後合併空閒buffer if (!list_is_last(&buffer->entry, &proc->buffers)) { struct binder_buffer *next = list_entry(buffer->entry.next, struct binder_buffer, entry); if (next->free) { rb_erase(&next->rb_node, &proc->free_buffers); binder_delete_free_buffer(proc, next); } } // 向前合併空閒buffer if (proc->buffers.next != &buffer->entry) { struct binder_buffer *prev = list_entry(buffer->entry.prev, struct binder_buffer, entry); if (prev->free) { binder_delete_free_buffer(proc, buffer); rb_erase(&prev->rb_node, &proc->free_buffers); buffer = prev; } } // 將合併後的buffer插入到free_buffers上 binder_insert_free_buffer(proc, buffer); } ...... static int binder_thread_write(struct binder_proc *proc, struct binder_thread *thread, binder_uintptr_t binder_buffer, size_t size, binder_size_t *consumed) { ...... case BC_FREE_BUFFER: { binder_uintptr_t data_ptr; struct binder_buffer *buffer; // 獲取用戶空間數據 if (get_user(data_ptr, (binder_uintptr_t __user *)ptr)) return -EFAULT; ptr += sizeof(binder_uintptr_t); // 從buffer樹中找到相應的binder_buffer buffer = binder_buffer_lookup(proc, data_ptr); ...... if (buffer->transaction) { buffer->transaction->buffer = NULL; buffer->transaction = NULL; } // 異步傳輸在釋放buffer時將未完成的async_todo工做移動到線程的todo隊列上 if (buffer->async_transaction && buffer->target_node) { BUG_ON(!buffer->target_node->has_async_transaction); if (list_empty(&buffer->target_node->async_todo)) buffer->target_node->has_async_transaction = 0; else list_move_tail(buffer->target_node->async_todo.next, &thread->todo); } trace_binder_transaction_buffer_release(buffer); // 減小binder引用計數 binder_transaction_buffer_release(proc, buffer, NULL); // 釋放buffer內存空間 binder_free_buf(proc, buffer); break; } ...... }
Binder通訊中,若是Client端只但願發送數據而無論Server端的執行結果,可使用異步傳輸。異步傳輸須要在傳輸數據的flag中設置TF_ONE_WAY位,簡單的傳輸流程以下圖。
異步傳輸在Binder驅動中的處理流程與同步傳輸同樣,咱們重點看一下對TF_ONE_WAY標誌的處理流程。
drivers/staging/android/binder.c static struct binder_buffer *binder_alloc_buf(struct binder_proc *proc, size_t data_size, size_t offsets_size, int is_async) { ...... // 異步傳輸須要考慮free_async_space if (is_async && proc->free_async_space < size + sizeof(struct binder_buffer)) { binder_debug(BINDER_DEBUG_BUFFER_ALLOC, "%d: binder_alloc_buf size %zd failed, no async space left\n", proc->pid, size); return NULL; } ...... buffer->data_size = data_size; buffer->offsets_size = offsets_size; // buffer中設置is_async標誌 buffer->async_transaction = is_async; if (is_async) { // 更新free_async_space proc->free_async_space -= size + sizeof(struct binder_buffer); binder_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, "%d: binder_alloc_buf size %zd async free %zd\n", proc->pid, size, proc->free_async_space); } return buffer; } ...... static void binder_transaction(struct binder_proc *proc, struct binder_thread *thread, struct binder_transaction_data *tr, int reply) { ...... // 異步傳輸時須要將傳輸事件的from設置爲空 if (!reply && !(tr->flags & TF_ONE_WAY)) t->from = thread; else t->from = NULL; ...... // 分配buffer時帶有異步標誌位 t->buffer = binder_alloc_buf(target_proc, tr->data_size, tr->offsets_size, !reply && (t->flags & TF_ONE_WAY)); ...... if (reply) { ...... } else if (!(t->flags & TF_ONE_WAY)) { ...... } else { // 異步傳輸使用async_todo隊列 if (target_node->has_async_transaction) { target_list = &target_node->async_todo; target_wait = NULL; } else target_node->has_async_transaction = 1; } t->work.type = BINDER_WORK_TRANSACTION; list_add_tail(&t->work.entry, target_list); tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; list_add_tail(&tcomplete->entry, &thread->todo); if (target_wait) wake_up_interruptible(target_wait); return; ...... } ...... static int binder_thread_read(struct binder_proc *proc, struct binder_thread *thread, binder_uintptr_t binder_buffer, size_t size, binder_size_t *consumed, int non_block) { ...... if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) { ...... } else { // 異步傳輸是單向的,不須要回復。 t->buffer->transaction = NULL; kfree(t); binder_stats_deleted(BINDER_STAT_TRANSACTION); } break; ...... }