使用C語言實現二維,三維繪圖算法(2)-解析曲面的顯示算法
---- 引言----編程
每次使用OpenGL或DirectX寫三維程序的時候, 都有一種隔靴搔癢的感受, 對於內部的三維算法的實現不甚瞭解. 其實想一想, Win32中既然存在畫線畫點函數, 利用計算機圖形學的知識, 咱們用能夠用純C調用Win32實現三維繪圖, 徹底不用藉助OpenGL和DirectX, 這有重複造輪子的嫌疑, 可是本身動手實現一遍, 畢竟也是有意義的.數組
[效果演示]函數
原始效果(100條浮動曲線)加密
加密之後的效果(200條浮動曲線)spa
[浮動水平線法繪圖過程]code
固定一個y值按步長變換給定一個x值, 從而可計算出平面截線一個點的z座標值. 將改點投影到xoy平面上, 而後再變換到屏幕上. 若是是曲線端點要填充邊界值. 接着檢驗此點的可見性,並用1表示上方可見, 0表示不可見, -1表示下方可見. 可見性檢測就是用當前點的y值與上下浮動水平線數組中相應的元素值進行比較,y值大於上水平線數組中元素值或小於下水平線數組中元素值, 則當前點可見, 不然不可見. 往下再計算同一平面截線的另外一點, 和上面點同樣, 先投影到座標平面上, 再變換到屏幕上. 先前的點叫緊前點, 當前的點爲當前點. 緊前點和當前點的可見性主要有下面一些可能情形:blog
[編程實現要點]it
曲面函數的定義class
float SurfaceFun(float X, float Y) { float w1, w2, w3, FV; w1=4*(X-2)*(X-2) + (Y-4)*(Y-4) - 1; w2=(X-5)*(X-5)/9 + 4*(Y-2)*(Y-2) - 1; w3=(X-5)*(X-5)/9 + 4*(Y-6)*(Y-6) - 1; if(w1>85) w1=85; if(w2>85) w2=85; if(w3>85) w3=85; FV=w1*w1*exp(-w1) + w2*w2*exp(-w2) + w3*w3*exp(-w3); return(FV); }
繪製曲面函數
void DrawSurface() { int Xe, Ye, Ln, Pt, XPre, YPre, XCur, YCur, Xi, Yi; int *pi, LimY, VisCur, VisPre; float X, Y, Z; LimY=GetWindowHeight(); SetLineColor(BLUE); for(Ln=0; Ln<=LNo; ++Ln) { Y=Y2-Ln*IncY; X=X1; Z=SurfaceFun(X,Y); CalcuProject(X, Y, Z); XPre = 0.5 + (XProj-F1)*EchX + C1; YPre = 0.5 + (YProj-F3)*EchY + C3; FillEdge(XPre, YPre, Xd, Yd); VisPre = VisibilityTest(XPre, YPre); for(Pt=0; Pt<=PNo; ++Pt) { X=X1+Pt*IncX; Z=SurfaceFun(X,Y); CalcuProject(X, Y, Z); XCur = 0.5 + (XProj-F1)*EchX + C1; YCur = 0.5 + (YProj-F3)*EchY + C3; VisCur = VisibilityTest(XCur, YCur); if( (HMax[XCur]==0) || (HMin[XCur]==LimY) ) VisCur = VisPre; if(VisCur == VisPre) { if( (VisCur==1) || (VisCur==-1) ) { if(0<=XCur) PlotLine(XPre, LimY-60-YPre, Xi, LimY-60-YCur); else if(0<=YCur) PlotLine(XPre, LimY-60-YPre, XPre, LimY-60-YCur); else PlotLine(Xi, LimY-60-YPre, XPre, LimY-60-YPre); HorizonInc(XPre, YPre, XCur, YCur); } } else // VisCur!=VisPre { if(VisCur==0) { if(VisPre == 1) { pi = Inter(XPre, YPre, XCur, YCur, HMax); Xi = *pi; Yi = *(pi+1); } else { pi = Inter(XPre, YPre, XCur, YCur, HMin); Xi = *pi; Yi = *(pi+1); } if(0<=Xi) PlotLine(XPre, LimY-60-YPre, Xi, LimY-60-Yi); else if(0<=Yi) PlotLine(XPre, LimY-60-Yi, XPre, LimY-60-Yi); else PlotLine(XPre, LimY-60-YPre, XPre, LimY-60-YPre); HorizonInc(XPre, YPre, Xi, Yi); } else { if(VisCur == 1) { if(VisPre == 0) { pi = Inter(XPre, YPre, XCur, YCur, HMax); Xi = *pi; Yi = *(pi+1); if(0<=Xi) PlotLine(Xi, LimY-60-Yi, XCur, LimY-60-YCur); else if(0<=Yi) PlotLine(XCur, LimY-60-YCur, XCur, LimY-60-YCur); else PlotLine(XCur, LimY-60-YCur, XCur, LimY-60-YCur); HorizonInc(Xi, Yi, XCur, YCur); } else { pi = Inter(XPre, YPre, XCur, YCur, HMin); Xi = *pi; Yi = *(pi+1); if(0<=Xi) PlotLine(XPre, LimY-60-YPre, Xi, LimY-60-Yi); else if(0<=Yi) PlotLine(XPre, LimY-60-YPre, XPre, LimY-60-Yi); else PlotLine(XPre, LimY-60-YPre, XPre, LimY-60-YPre); HorizonInc(XPre, YPre, Xi, Yi); pi = Inter(XPre, YPre, XCur, YCur, HMax); Xi = *pi; Yi = *(pi+1); if(0<=Xi) PlotLine(Xi, LimY-60-YCur, XCur, LimY-60-YCur); else if(0<=Yi) PlotLine(XCur, LimY-60-Yi, XCur, LimY-60-YCur); else PlotLine(XCur, LimY-60-YCur, XCur, LimY-60-YCur); HorizonInc(Xi, Yi, XCur, YCur); } } else // VisCur!=0, VisCur!=1 { if(VisPre == 0) { pi = Inter(XPre, YPre, XCur, YCur, HMin); Xi = *pi; Yi = *(pi+1); if(0<=Xi) PlotLine(Xi, LimY-60-YCur, XCur, LimY-60-YCur); else if(0<=Yi) PlotLine(XCur, LimY-60-Yi, XCur, LimY-60-YCur); else PlotLine(XCur, LimY-60-YCur, XCur, LimY-60-YCur); HorizonInc(Xi, Yi, XCur, YCur); } else // VisCur!=0, VisCur!=1, VisPre!=0 { pi = Inter(XPre, YPre, XCur, YCur, HMax); Xi = *pi; Yi = *(pi+1); if(0<=Xi) PlotLine(XPre, LimY-60-YPre, Xi, LimY-60-Yi); else if(0<=Yi) PlotLine(XPre, LimY-60-YPre, XPre, LimY-60-Yi); else PlotLine(XPre, LimY-60-YPre, XPre, LimY-60-YPre); HorizonInc(XPre, YPre, Xi, Yi); pi = Inter(XPre, YPre, XCur, YCur, HMin); Xi = *pi; Yi = *(pi+1); if(0<=Xi) PlotLine(Xi, LimY-60-Yi, XCur, LimY-60-YCur); else PlotLine(XCur, LimY-60-YCur, XCur, LimY-60-YCur); HorizonInc(Xi, Yi, XCur, YCur); } } } } VisPre = VisCur; XPre = XCur; YPre = YCur; } FillEdge(XCur, YCur, Xg, Yg); } }