本文參考caffe官網教程以及網上的兩篇教程:Ubuntu14.04+CPU+Python的Caffe安裝教程、Caffe學習系列(13):數據可視化環境(python接口)配置編寫而成,由於過程比較波折,記錄下來以備往後查用html
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install libatlas-base-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
sudo apt-get install python-dev
###安裝anaconda 從清華的鏡像下載anaconda,根據anaconda官網提供的版本號,從清華鏡像的目錄中查找到對應的版本爲Anaconda2-5.0.1-Linux-x86_64.sh(python2.7版本)python
wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda2-5.0.1-Linux-x86_64.sh
下載完成後,運行這個sh。在安裝的過程當中,會問你安裝路徑,直接回車默認就能夠了。有個地方問你是否將anaconda安裝路徑加入到環境變量(.bashrc)中,這個必定要輸入yes。linux
安裝成功後,會有當前用戶根目錄下生成一個anaconda2的文件夾,裏面就是安裝好的內容。git
git clone https://github.com/BVLC/caffe.git
將caffe根目錄下的python文件夾加入到環境變量,等編譯好了之後就能夠import caffe來使用了github
打開配置文件bashrcshell
sudo vi ~/.bashrc
在最後面加入bash
export PYTHONPATH=$(caffe_path)/python:$PYTHONPATH
注意 $(caffe_path) 須要根據本身caffe安裝路徑的實際狀況配置app
保存退出,更新配置文件python2.7
source ~/.bashrc
首先,在caffe的根目錄下複製Makefile.config.example 成 Makefile.config學習
cp Makefile.config.example Makefile.config
而後修改Makefile.config,個人配置以下所示
## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN). # USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support). #由於使用的是cpu模式,因此要放開 CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers # USE_OPENCV := 0 # USE_LEVELDB := 0 # USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary) # You should not set this flag if you will be reading LMDBs with any # possibility of simultaneous read and write # ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3 # OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda # On Ubuntu 14.04, if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. # For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility. # For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility. # For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility. CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \ -gencode arch=compute_20,code=sm_21 \ -gencode arch=compute_30,code=sm_30 \ -gencode arch=compute_35,code=sm_35 \ -gencode arch=compute_50,code=sm_50 \ -gencode arch=compute_52,code=sm_52 \ -gencode arch=compute_60,code=sm_60 \ -gencode arch=compute_61,code=sm_61 \ -gencode arch=compute_61,code=compute_61 # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas BLAS := atlas # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)! # BLAS_INCLUDE := /path/to/your/blas # BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path # BLAS_INCLUDE := $(shell brew --prefix openblas)/include # BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. # MATLAB_DIR := /usr/local # MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. #PYTHON_INCLUDE := /usr/include/python2.7 \ /usr/lib/python2.7/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location, sometimes it's in root. #由於使用了anaconda因此要配置anaconda的地址,若是不配置則會出現找不到*.h的狀況 ANACONDA_HOME := $(HOME)/anaconda2 #使用anaconda的頭文件 PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ $(ANACONDA_HOME)/include/python2.7 \ $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include # Uncomment to use Python 3 (default is Python 2) # PYTHON_LIBRARIES := boost_python3 python3.5m # PYTHON_INCLUDE := /usr/include/python3.5m \ # /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. # PYTHON_LIB := /usr/lib #使用anaconda的庫 PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) # WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # NCCL acceleration switch (uncomment to build with NCCL) # https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0) # USE_NCCL := 1 # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) # USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean` BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 # DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) Q ?= @
make pycaffe -j8 make all -j8 make test -j8 make runtest -j8
進入caffe/python ,運行python
python Python 2.7.14 |Anaconda custom (64-bit)| (default, Oct 16 2017, 17:29:19) [GCC 7.2.0] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> import caffe >>>
輸入import caffe沒有反應則說明成功,但若是出現問題error :No module named google.protobuf.internal,則運行如下代碼:
conda install protobuf
接下來,運行caffe自帶的例子,可參考運行caffe自帶的兩個簡單例子