hbase架構解析

HBase是Apache Hadoop中的一個子項目,Hbase依託於Hadoop的HDFS做爲最基本存儲基礎單元,經過使用hadoop的DFS工具就能夠看到這些這些數據存儲文件夾的結構,還能夠經過Map/Reduce的框架(算法)對HBase進行操做css

1、   hbase架構html

 1.概述。前端

HBase是Apache Hadoop的數據庫,可以對大型數據提供隨機、實時的讀寫訪問。HBase的目標是存儲並處理大型的數據。HBase是一個開源的,分佈式的,多版本的,面向列的存儲模型。它存儲的是鬆散型數據。linux

上圖是hadoop的生態系統描述,hadoop全部應用都是構建於hdfs(它提供高可靠的底層存儲支持,幾乎已經成爲分佈式文件存儲系統事實上的工業標準)之上的分佈式列存儲系統,主要用於海量結構化數據存儲。web

HBase是一種NoSQL數據庫. NoSQL是一個通用詞表示數據庫不是RDBMS ,後者支持 SQL 做爲主要訪問手段。有許多種 NoSQL 數據庫: BerkeleyDB 是本地 NoSQL 數據庫例子, 而 HBase 是大型分佈式數據庫。 技術上來講, HBase 更像是"數據存儲(Data Store)" 多於 "數據庫(Data Base)"。由於缺乏不少RDBMS特性, 如列類型,第二索引,觸發器,高級查詢語言等算法

然而, HBase 有許多特徵同時支持線性化和模塊化擴充。 HBase 集羣經過增長RegionServers進行擴充。 它能夠放在普通的服務器中。例如,若是集羣從10個擴充到20個RegionServer,存儲空間和處理容量都同時翻倍。 RDBMS 也能很好擴充, 但僅對一個點 - 特別是對一個單獨數據庫服務器的大小 - 同時,爲了更好的性能,須要特殊的硬件和存儲設備。Hbase特性:shell

強一致性讀寫: HBase 不是 "最終一致性(eventually consistent)" 數據存儲. 這讓它很適合高速計數聚合類任務。數據庫

自動分片(Automatic sharding):HBase 表經過region分佈在集羣中。數據增加時,region會自動分割並從新分佈。apache

RegionServer 自動故障轉移編程

Hadoop/HDFS 集成: HBase 支持本機外HDFS 做爲它的分佈式文件系統。

MapReduce: HBase 經過MapReduce支持大併發處理, HBase 能夠同時作源和目標.

Java 客戶端 API: HBase 支持易於使用的 Java API 進行編程訪問.

Thrift/REST API:HBase 也支持Thrift和 REST 做爲非Java 前端.

Block Cache 和 Bloom Filters: 對於大容量查詢優化, HBase支持 Block Cache 和 Bloom Filters。

運維管理: HBase提供內置網頁用於運維視角和JMX 度量.

前文提到Hbase是一個列式存儲的數據庫,那麼什麼是列式存儲,它與傳統的RDBMS採用的行式存儲又有什麼區別?列存儲不一樣於傳統的關係型數據庫,其數據在表中是按行存儲的,列方式所帶來的重要好處之一就是,因爲查詢中的選擇規則是經過列來定義的,所以整個數據庫是自動索引化的。按列存儲每一個字段的數據彙集存儲,在查詢只須要少數幾個字段的時候,能大大減小讀取的數據量,一個字段的數據彙集存儲,那就更容易爲這種彙集存儲設計更好的壓縮/解壓算法。這張圖講述了傳統的行存儲和列存儲的區別:

 2.hbase架構

注:準確的說位於上圖下半部分的組建應該是hdfs而非hadoop,hbase並不依賴於hadoop,可是它構建於hdfs之上。

Zookeeper
Zookeeper Quorum存儲-ROOT-表地址、HMaster地址
HRegionServer把本身以Ephedral方式註冊到Zookeeper中,HMaster隨時感知各個HRegionServer的健康情況
Zookeeper避免HMaster單點問題
HMaster
HMaster沒有單點問題,HBase中能夠啓動多個HMaster,經過Zookeeper的MasterElection機制保證總有一個Master在運行
主要負責Table和Region的管理工做:
1 管理用戶對錶的增刪改查操做
2 管理HRegionServer的負載均衡,調整Region分佈
3 Region Split後,負責新Region的分佈
4 在HRegionServer停機後,負責失效HRegionServer上Region遷移

HRegionServer
HBase中最核心的模塊,主要負責響應用戶I/O請求,向HDFS文件系統中讀寫數據

HRegionServer管理一些列HRegion對象;
每一個HRegion對應Table中一個Region,HRegion由多個HStore組成;
每一個HStore對應Table中一個Column Family的存儲;
Column Family就是一個集中的存儲單元,故將具備相同IO特性的Column放在一個Column Family會更高效

HStore
HBase存儲的核心。由MemStore和StoreFile組成。
MemStore是Sorted Memory Buffer。用戶寫入數據的流程:

Client寫入 -> 存入MemStore,一直到MemStore滿 -> Flush成一個StoreFile,直至增加到必定閾值 -> 出發Compact合併操做 -> 多個StoreFile合併成一個StoreFile,同時進行版本合併和數據刪除 -> 當StoreFiles Compact後,逐步造成愈來愈大的StoreFile ->單個StoreFile大小超過必定閾值後,觸發Split操做,把當前Region Split成2個Region,Region會下線,新Split出的2個孩子Region會被HMaster分配到相應的HRegionServer 上,使得原先1個Region的壓力得以分流到2個Region上
由此過程可知,HBase只是增長數據,全部的更新和刪除操做,都是在Compact階段作的,因此,用戶寫操做只須要進入到內存便可當即返回,從而保證I/O高性能。

HLog
引入HLog緣由:
在分佈式系統環境中,沒法避免系統出錯或者宕機,一旦HRegionServer意外退出,MemStore中的內存數據就會丟失,引入HLog就是防止這種狀況
工做機制:
每 個HRegionServer中都會有一個HLog對象,HLog是一個實現Write Ahead Log的類,每次用戶操做寫入Memstore的同時,也會寫一份數據到HLog文件,HLog文件按期會滾動出新,並刪除舊的文件(已持久化到 StoreFile中的數據)。當HRegionServer意外終止後,HMaster會經過Zookeeper感知,HMaster首先處理遺留的 HLog文件,將不一樣region的log數據拆分,分別放到相應region目錄下,而後再將失效的region從新分配,領取到這些region的 HRegionServer在Load Region的過程當中,會發現有歷史HLog須要處理,所以會Replay HLog中的數據到MemStore中,而後flush到StoreFiles,完成數據恢復。

HBase存儲格式
HBase中的全部數據文件都存儲在Hadoop HDFS文件系統上,格式主要有兩種:
1 HFile HBase中KeyValue數據的存儲格式,HFile是Hadoop的二進制格式文件,實際上StoreFile就是對HFile作了輕量級包裝,即StoreFile底層就是HFile
2 HLog File,HBase中WAL(Write Ahead Log) 的存儲格式,物理上是Hadoop的Sequence File

HFile

HFile文件不定長,長度固定的塊只有兩個:Trailer和FileInfo
Trailer中指針指向其餘數據塊的起始點
File Info中記錄了文件的一些Meta信息,例如:AVG_KEY_LEN,AVG_VALUE_LEN, LAST_KEY, COMPARATOR, MAX_SEQ_ID_KEY等
Data Index和Meta Index塊記錄了每一個Data塊和Meta塊的起始點
Data Block是HBase I/O的基本單元,爲了提升效率,HRegionServer中有基於LRU的Block Cache機制
每一個Data塊的大小能夠在建立一個Table的時候經過參數指定,大號的Block有利於順序Scan,小號Block利於隨機查詢
每一個Data塊除了開頭的Magic之外就是一個個KeyValue對拼接而成, Magic內容就是一些隨機數字,目的是防止數據損壞

HFile裏面的每一個KeyValue對就是一個簡單的byte數組。這個byte數組裏麪包含了不少項,而且有固定的結構。

KeyLength和ValueLength:兩個固定的長度,分別表明Key和Value的長度
Key部分:Row Length是固定長度的數值,表示RowKey的長度,Row 就是RowKey
Column Family Length是固定長度的數值,表示Family的長度
接着就是Column Family,再接着是Qualifier,而後是兩個固定長度的數值,表示Time Stamp和Key Type(Put/Delete)
Value部分沒有這麼複雜的結構,就是純粹的二進制數據

HLog文件就是一個普通的Hadoop Sequence File,Sequence File 的Key是HLogKey對象,HLogKey中記錄了寫入數據的歸屬信息,除了table和region名字外,同時還包括 sequence number和timestamp,timestamp是「寫入時間」,sequence number的起始值爲0,或者是最近一次存入文件系統中sequence number。
HLog Sequece File的Value是HBase的KeyValue對象,即對應HFile中的KeyValue

 3.何時應該使用hbase

在學習一門新技術的時候首先須要明白,咱們到底應該在何時使用它,而後纔是怎麼去使用它,Hbase並不適合全部問題。

首先,確信有足夠多數據,若是有上億或上千億行數據,HBase是很好的備選。若是隻有上千或上百萬行,則用傳統的RDBMS多是更好的選擇。由於全部數據能夠在一兩個節點保存,集羣其餘節點可能閒置。

其次,確信能夠不依賴全部RDBMS的額外特性 (e.g., 列數據類型, 第二索引,事物,高級查詢語言等.) 一個創建在RDBMS上應用,如不能僅經過改變一個JDBC驅動移植到HBase。相對於移植, 需考慮從RDBMS 到 HBase是一次徹底的從新設計。

第三, 確信你有足夠硬件。甚至 HDFS 在小於5個數據節點時,幹很差什麼事情 (根據如HDFS 塊複製具備缺省值 3), 還要加上一個NameNode.

HBase 能在單獨的筆記本上運行良好。但這應僅當成開發配置。

4.目錄表(.meta.和-root-)

-ROOT- 保存 .META. 表存在哪裏的蹤影. -ROOT- 表結構以下:

Key:

.META. region key (.META.,,1)

Values:

info:regioninfo (序列化.META.的 HRegionInfo 實例 )

info:server ( 保存 .META.的RegionServer的server:port)

info:serverstartcode ( 保存 .META.的RegionServer進程的啓動時間)

.META. 保存系統中全部region列表。 .META.表結構以下:

Key:

Region key 格式 ([table],[region start key],[region id])

Values:

info:regioninfo (序列化.META.的 HRegionInfo 實例 )

info:server ( 保存 .META.的RegionServer的server:port)

info:serverstartcode ( 保存 .META.的RegionServer進程的啓動時間)

以上是官網文檔對於.meta.和-root-的描述,簡而言之,-root-中存儲了.meta.的位置,而在.meta.中保存了具體數據(region)的存儲位置。如圖:

Zookeeper中記錄了-ROOT-表的location
客戶端訪問數據的流程:
Client -> Zookeeper -> -ROOT- -> .META.-> 用戶數據表
屢次網絡操做,不過client端有cache緩存

a.    啓動時序

1.啓動時主服務器調用AssignmentManager.

2.AssignmentManager 在META中查找已經存在的區域分配。

3.若是區域分配還有效(如 RegionServer 還在線),那麼分配繼續保持。

4.若是區域分配失效,LoadBalancerFactory 被調用來分配區域。 DefaultLoadBalancer 將隨機分配區域到RegionServer.

5.META 隨RegionServer 分配更新(若是須要) , RegionServer 啓動區域開啓代碼(RegionServer 啓動時進程)

b.故障轉移

當regionServer故障退出時:

1.區域當即不可獲取,由於區域服務器退出。

2.主服務器會檢測到區域服務器退出。

3.區域分配會失效並被從新分配,如同啓動時序。

5.預寫日誌(wal)

每一個RegionServer會將更新(Puts, Deletes)先記錄到預寫日誌中(WAL),而後將其更新在StoreMemStore裏面。這樣就保證了HBase的寫的可靠性。若是沒有WAL,當RegionServer宕掉的時候,MemStore尚未flush,StoreFile尚未保存,數據就會丟失。HLog 是HBase的一個WAL實現,一個RegionServer有一個HLog實例。

WAL 保存在HDFS 的 /hbase/.logs/ 裏面,每一個region一個文件。

2、   數據模型

1.概念視圖

以bigTable論文中的例子來講明,有一個名爲webtable的表,包含兩個列族:contents和anchor.在這個例子裏面,anchor有兩個列 (anchor:cssnsi.com,anchor:my.look.ca),contents僅有一列(contents:html)

Row Key

Time Stamp

ColumnFamily contents

ColumnFamily anchor

"com.cnn.www"

t9

 

anchor:cnnsi.com = "CNN"

"com.cnn.www"

t8

 

anchor:my.look.ca = "CNN.com"

"com.cnn.www"

t6

contents:html = "<html>..."

 

"com.cnn.www"

t5

contents:html = "<html>..."

 

"com.cnn.www"

t3

contents:html = "<html>..."

 

RowKey:行鍵,是表中每條記錄的「主鍵」,方便快速查找,Rowkey的設計很是重要。
Column Family:列族,擁有一個名稱(string),包含一個或者多個相關列
Column:屬於某一個columnfamily,每條記錄可動態添加
Version Number:類型爲Long,默認值是系統時間戳,可由用戶自定義
Value(Cell):一個cell由familyName:columnName惟必定義

2.物理視圖

儘管在概念視圖裏,表能夠被當作是一個稀疏的行的集合。但在物理上,它的是區分列族 存儲的。新的columns能夠不通過聲明直接加入一個列族.

Row Key

Time Stamp

Column Family anchor

"com.cnn.www"

t9

anchor:cnnsi.com = "CNN"

"com.cnn.www"

t8

anchor:my.look.ca = "CNN.com"

 

Row Key

Time Stamp

ColumnFamily "contents:"

"com.cnn.www"

t6

contents:html = "<html>..."

"com.cnn.www"

t5

contents:html = "<html>..."

"com.cnn.www"

t3

contents:html = "<html>..."

值得注意的是在上面的概念視圖中空白cell在物理上是不存儲的,由於根本沒有必要存儲。所以若一個請求爲要獲取t8時間的contents:html,他的結果就是空。類似的,若請求爲獲取t9時間的anchor:my.look.ca,結果也是空。可是,若是不指明時間,將會返回最新時間的行,每一個最新的都會返回。例如,若是請求爲獲取行鍵爲"com.cnn.www",沒有指明時間戳的話,活動的結果是t6下的contents:html,t9下的anchor:cnnsi.com和t8下anchor:my.look.ca。

對於hbase我一直有一個疑問,在hbase提供了修改和刪除的接口,可是hdfs自己很難實現修改和刪除(能夠將文件塊從hdfs中下載,進行修改再上傳),那麼hbase是如何實現快速的刪除與修改呢?實際上在HBase中,修改和刪除數據都是增長1個新版本的數據(時間戳爲最新),舊版本的數據並無發生變化,而實際上的修改和刪除是在Hfile的合併階段實現的。

3、   Hbase優化

1.    預先分區

默認狀況下,在建立 HBase 表的時候會自動建立一個 Region 分區,當導入數據的時候,全部的 HBase 客戶端都向這一個 Region 寫數據,直到這個 Region 足夠大了才進行切分。一種能夠加快批量寫入速度的方法是經過預先建立一些空的 Regions,這樣當數據寫入 HBase 時,會按照 Region 分區狀況,在集羣內作數據的負載均衡。

2.    Rowkey優化

HBase 中 Rowkey 是按照字典序存儲,所以,設計 Rowkey 時,要充分利用排序特色,將常常一塊兒讀取的數據存儲到一塊,將最近可能會被訪問的數據放在一塊。

此外,Rowkey 如果遞增的生成,建議不要使用正序直接寫入 Rowkey,而是採用 reverse 的方式反轉Rowkey,使得 Rowkey 大體均衡分佈,這樣設計有個好處是能將 RegionServer 的負載均衡,不然容易產生全部新數據都在一個 RegionServer 上堆積的現象,這一點還能夠結合 table 的預切分一塊兒設計。

3.    減小列族數量

不要在一張表裏定義太多的 ColumnFamily。目前 Hbase 並不能很好的處理超過 2~3 個 ColumnFamily 的表。由於某個 ColumnFamily 在 flush 的時候,它鄰近的 ColumnFamily 也會因關聯效應被觸發 flush,最終致使系統產生更多的 I/O。

4.    緩存策略

建立表的時候,能夠經過 HColumnDescriptor.setInMemory(true) 將表放到 RegionServer 的緩存中,保證在讀取的時候被 cache 命中。

5.    設置存儲生命期

建立表的時候,能夠經過 HColumnDescriptor.setTimeToLive(int timeToLive) 設置表中數據的存儲生命期,過時數據將自動被刪除。

6.    硬盤配置

每臺 RegionServer 管理 10~1000 個 Regions,每一個 Region 在 1~2G,則每臺 Server 最少要 10G,最大要1000*2G=2TB,考慮 3 備份,則要 6TB。方案一是用 3 塊 2TB 硬盤,二是用 12 塊 500G 硬盤,帶寬足夠時,後者能提供更大的吞吐率,更細粒度的冗餘備份,更快速的單盤故障恢復。

7.    分配合適的內存給RegionServer服務

在不影響其餘服務的狀況下,越大越好。例如在 HBase 的 conf 目錄下的 hbase-env.sh 的最後添加 export HBASE_REGIONSERVER_OPTS="-Xmx16000m$HBASE_REGIONSERVER_OPTS」

其中 16000m 爲分配給 RegionServer 的內存大小。

8.    寫數據的備份數

備份數與讀性能成正比,與寫性能成反比,且備份數影響高可用性。有兩種配置方式,一種是將 hdfs-site.xml拷貝到 hbase 的 conf 目錄下,而後在其中添加或修改配置項 dfs.replication 的值爲要設置的備份數,這種修改對全部的 HBase 用戶表都生效,另一種方式,是改寫 HBase 代碼,讓 HBase 支持針對列族設置備份數,在建立表時,設置列族備份數,默認爲 3,此種備份數只對設置的列族生效。

9.    WAL(預寫日誌)

可設置開關,表示 HBase 在寫數據前用不用先寫日誌,默認是打開,關掉會提升性能,可是若是系統出現故障(負責插入的 RegionServer 掛掉),數據可能會丟失。配置 WAL 在調用 JavaAPI 寫入時,設置 Put 實例的WAL,調用 Put.setWriteToWAL(boolean)。

10. 批量寫

HBase 的 Put 支持單條插入,也支持批量插入,通常來講批量寫更快,節省來回的網絡開銷。在客戶端調用JavaAPI 時,先將批量的 Put 放入一個 Put 列表,而後調用 HTable 的 Put(Put 列表) 函數來批量寫。

11. 客戶端一次從服務器拉取的數量

經過配置一次拉去的較大的數據量能夠減小客戶端獲取數據的時間,可是它會佔用客戶端內存。有三個地方可進行配置:

1)在 HBase 的 conf 配置文件中進行配置 hbase.client.scanner.caching;

2)經過調用 HTable.setScannerCaching(intscannerCaching) 進行配置;

3)經過調用 Scan.setCaching(intcaching) 進行配置。三者的優先級愈來愈高。

12. RegionServer的請求處理I/O線程數

較少的 IO 線程適用於處理單次請求內存消耗較高的 Big Put 場景 (大容量單次 Put 或設置了較大 cache 的Scan,均屬於 Big Put) 或 ReigonServer 的內存比較緊張的場景。

較多的 IO 線程,適用於單次請求內存消耗低,TPS 要求 (每秒事務處理量 (TransactionPerSecond)) 很是高的場景。設置該值的時候,以監控內存爲主要參考。

在 hbase-site.xml 配置文件中配置項爲 hbase.regionserver.handler.count。

13. Region的大小設置

配置項爲 hbase.hregion.max.filesize,所屬配置文件爲 hbase-site.xml.,默認大小 256M。

在當前 ReigonServer 上單個 Reigon 的最大存儲空間,單個 Region 超過該值時,這個 Region 會被自動 split成更小的 Region。小 Region 對 split 和 compaction 友好,由於拆分 Region 或 compact 小 Region 裏的StoreFile 速度很快,內存佔用低。缺點是 split 和 compaction 會很頻繁,特別是數量較多的小 Region 不停地split, compaction,會致使集羣響應時間波動很大,Region 數量太多不只給管理上帶來麻煩,甚至會引起一些Hbase 的 bug。通常 512M 如下的都算小 Region。大 Region 則不太適合常常 split 和 compaction,由於作一次 compact 和 split 會產生較長時間的停頓,對應用的讀寫性能衝擊很是大。

此外,大 Region 意味着較大的 StoreFile,compaction 時對內存也是一個挑戰。若是你的應用場景中,某個時間點的訪問量較低,那麼在此時作 compact 和 split,既能順利完成 split 和 compaction,又能保證絕大多數時間平穩的讀寫性能。compaction 是沒法避免的,split 能夠從自動調整爲手動。只要經過將這個參數值調大到某個很難達到的值,好比 100G,就能夠間接禁用自動 split(RegionServer 不會對未到達 100G 的 Region 作split)。再配合 RegionSplitter 這個工具,在須要 split 時,手動 split。手動 split 在靈活性和穩定性上比起自動split 要高不少,並且管理成本增長很少,比較推薦 online 實時系統使用。內存方面,小 Region 在設置memstore 的大小值上比較靈活,大 Region 則過大太小都不行,過大會致使 flush 時 app 的 IO wait 增高,太小則因 StoreFile 過多影響讀性能。

14. 操做系統參數

Linux系統最大可打開文件數通常默認的參數值是1024,若是你不進行修改併發量上來的時候會出現「Too Many Open Files」的錯誤,致使整個HBase不可運行,你能夠用ulimit -n 命令進行修改,或者修改/etc/security/limits.conf和/proc/sys/fs/file-max 的參數,具體如何修改能夠去Google 關鍵字 「linux limits.conf 」

15. Jvm配置

修改 hbase-env.sh 文件中的配置參數,根據你的機器硬件和當前操做系統的JVM(32/64位)配置適當的參數

HBASE_HEAPSIZE 4000 HBase使用的 JVM 堆的大小

HBASE_OPTS "‐server ‐XX:+UseConcMarkSweepGC"JVM GC 選項

HBASE_MANAGES_ZKfalse 是否使用Zookeeper進行分佈式管理

16. 持久化

重啓操做系統後HBase中數據全無,你能夠不作任何修改的狀況下,建立一張表,寫一條數據進行,而後將機器重啓,重啓後你再進入HBase的shell中使用 list 命令查看當前所存在的表,一個都沒有了。是否是很杯具?沒有關係你能夠在hbase/conf/hbase-default.xml中設置hbase.rootdir的值,來設置文件的保存位置指定一個文件夾,例如:<value>file:///you/hbase-data/path</value>,你創建的HBase中的表和數據就直接寫到了你的磁盤上,一樣你也能夠指定你的分佈式文件系統HDFS的路徑例如:hdfs://NAMENODE_SERVER:PORT/HBASE_ROOTDIR,這樣就寫到了你的分佈式文件系統上了。

17. 緩衝區大小

hbase.client.write.buffer

這個參數能夠設置寫入數據緩衝區的大小,當客戶端和服務器端傳輸數據,服務器爲了提升系統運行性能開闢一個寫的緩衝區來處理它,這個參數設置若是設置的大了,將會對系統的內存有必定的要求,直接影響系統的性能。

18. 掃描目錄表

hbase.master.meta.thread.rescanfrequency

定義多長時間HMaster對系統表 root 和 meta 掃描一次,這個參數能夠設置的長一些,下降系統的能耗。

19. split/compaction時間間隔

hbase.regionserver.thread.splitcompactcheckfrequency

這個參數是表示多久去RegionServer服務器運行一次split/compaction的時間間隔,固然split以前會先進行一個compact操做.這個compact操做多是minorcompact也多是major compact.compact後,會從全部的Store下的全部StoreFile文件最大的那個取midkey.這個midkey可能並不處於所有數據的mid中.一個row-key的下面的數據可能會跨不一樣的HRegion。

20. 緩存在JVM堆中分配的百分比

hfile.block.cache.size

指定HFile/StoreFile 緩存在JVM堆中分配的百分比,默認值是0.2,意思就是20%,而若是你設置成0,就表示對該選項屏蔽。

21. ZooKeeper客戶端同時訪問的併發鏈接數

hbase.zookeeper.property.maxClientCnxns

這項配置的選項就是從zookeeper中來的,表示ZooKeeper客戶端同時訪問的併發鏈接數,ZooKeeper對於HBase來講就是一個入口這個參數的值能夠適當放大些。

22. memstores佔用堆的大小參數配置

hbase.regionserver.global.memstore.upperLimit

在RegionServer中全部memstores佔用堆的大小參數配置,默認值是0.4,表示40%,若是設置爲0,就是對選項進行屏蔽。

23. Memstore中緩存寫入大小

hbase.hregion.memstore.flush.size

Memstore中緩存的內容超過配置的範圍後將會寫到磁盤上,例如:刪除操做是先寫入MemStore裏作個標記,指示那個value, column 或 family等下是要刪除的,HBase會按期對存儲文件作一個major compaction,在那時HBase會把MemStore刷入一個新的HFile存儲文件中。若是在必定時間範圍內沒有作major compaction,而Memstore中超出的範圍就寫入磁盤上了。

相關文章
相關標籤/搜索