Spark+Kafka的Direct方式將偏移量發送到Zookeeper實現

 Apache Spark 1.3.0引入了Direct API,利用Kafka的低層次API從Kafka集羣中讀取數據,而且在SparkStreaming系統裏面維護偏移量相關的信息,而且經過這種方式去實現零數據丟失(zero data loss)相比使用基於Receiver的方法要高效。可是由於是Spark Streaming系統本身維護Kafka的讀偏移量,而Spark Streaming系統並無將這個消費的偏移量發送到Zookeeper中,這將致使那些基於偏移量的Kafka集羣監控軟件(好比:Apache Kafka監控之Kafka Web ConsoleApache Kafka監控之KafkaOffsetMonitor等)失效。本文就是基於爲了解決這個問題,使得咱們編寫的Spark Streaming程序可以在每次接收到數據以後自動地更新Zookeeper中Kafka的偏移量。apache

  咱們從Spark的官方文檔能夠知道,維護Spark內部維護Kafka便宜了信息是存儲在HasOffsetRanges類的offsetRanges中,咱們能夠在Spark Streaming程序裏面獲取這些信息:api

val offsetsList = rdd.asInstanceOf[HasOffsetRanges].offsetRanges微信

這樣咱們就能夠獲取因此分區消費信息,只須要遍歷offsetsList,而後將這些信息發送到Zookeeper便可更新Kafka消費的偏移量。完整的代碼片斷以下:app

val messages = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topicsSet)dom

      messages.foreachRDD(rdd => {socket

        val offsetsList = rdd.asInstanceOf[HasOffsetRanges].offsetRanges工具

        val kc = new KafkaCluster(kafkaParams)oop

        for (offsets < - offsetsList) {this

          val topicAndPartition = TopicAndPartition("iteblog", offsets.partition)spa

          val o = kc.setConsumerOffsets(args(0), Map((topicAndPartition, offsets.untilOffset)))

          if (o.isLeft) {

            println(s"Error updating the offset to Kafka cluster: ${o.left.get}")

          }

        }

})

  KafkaCluster類用於創建和Kafka集羣的連接相關的操做工具類,咱們能夠對Kafka中Topic的每一個分區設置其相應的偏移量Map((topicAndPartition, offsets.untilOffset)),而後調用KafkaCluster類的setConsumerOffsets方法去更新Zookeeper裏面的信息,這樣咱們就能夠更新Kafka的偏移量,最後咱們就能夠經過KafkaOffsetMonitor之類軟件去監控Kafka中相應Topic的消費信息,下圖是KafkaOffsetMonitor的監控狀況:



若是想及時瞭解Spark、Hadoop或者Hbase相關的文章,歡迎關注微信公共賬號:iteblog_hadoop

  從圖中咱們能夠看到KafkaOffsetMonitor監控軟件已經能夠監控到Kafka相關分區的消費狀況,這對監控咱們整個Spark Streaming程序來很是重要,由於咱們能夠任意時刻了解Spark讀取速度。另外,KafkaCluster工具類的完整代碼以下:

package org.apache.spark.streaming.kafka

 

import kafka.api.OffsetCommitRequest

import kafka.common.{ErrorMapping, OffsetMetadataAndError, TopicAndPartition}

import kafka.consumer.SimpleConsumer

import org.apache.spark.SparkException

import org.apache.spark.streaming.kafka.KafkaCluster.SimpleConsumerConfig

 

import scala.collection.mutable.ArrayBuffer

import scala.util.Random

import scala.util.control.NonFatal

 

/**

 * User: 過往記憶

 * Date: 2015-06-02

 * Time: 下午23:46

 * bolg: https://www.iteblog.com

 * 本文地址:https://www.iteblog.com/archives/1381

 * 過往記憶博客,專一於hadoop、hive、spark、shark、flume的技術博客,大量的乾貨

 * 過往記憶博客微信公共賬號:iteblog_hadoop

 */

 

class KafkaCluster(val kafkaParams: Map[String, String]) extends Serializable {

  type Err = ArrayBuffer[Throwable]

 

  @transient private var _config: SimpleConsumerConfig = null

 

  def config: SimpleConsumerConfig = this.synchronized {

    if (_config == null) {

      _config = SimpleConsumerConfig(kafkaParams)

    }

    _config

  }

 

  def setConsumerOffsets(groupId: String,

                         offsets: Map[TopicAndPartition, Long]

                          ): Either[Err, Map[TopicAndPartition, Short]] = {

    setConsumerOffsetMetadata(groupId, offsets.map { kv =>

      kv._1 -> OffsetMetadataAndError(kv._2)

    })

  }

 

  def setConsumerOffsetMetadata(groupId: String,

                                metadata: Map[TopicAndPartition, OffsetMetadataAndError]

                                 ): Either[Err, Map[TopicAndPartition, Short]] = {

    var result = Map[TopicAndPartition, Short]()

    val req = OffsetCommitRequest(groupId, metadata)

    val errs = new Err

    val topicAndPartitions = metadata.keySet

    withBrokers(Random.shuffle(config.seedBrokers), errs) { consumer =>

      val resp = consumer.commitOffsets(req)

      val respMap = resp.requestInfo

      val needed = topicAndPartitions.diff(result.keySet)

      needed.foreach { tp: TopicAndPartition =>

        respMap.get(tp).foreach { err: Short =>

          if (err == ErrorMapping.NoError) {

            result += tp -> err

          } else {

            errs.append(ErrorMapping.exceptionFor(err))

          }

        }

      }

      if (result.keys.size == topicAndPartitions.size) {

        return Right(result)

      }

    }

    val missing = topicAndPartitions.diff(result.keySet)

    errs.append(new SparkException(s"Couldn't set offsets for ${missing}"))

    Left(errs)

  }

 

  private def withBrokers(brokers: Iterable[(String, Int)], errs: Err)

                         (fn: SimpleConsumer => Any): Unit = {

    brokers.foreach { hp =>

      var consumer: SimpleConsumer = null

      try {

        consumer = connect(hp._1, hp._2)

        fn(consumer)

      } catch {

        case NonFatal(e) =>

          errs.append(e)

      } finally {

        if (consumer != null) {

          consumer.close()

        }

      }

    }

  }

 

  def connect(host: String, port: Int): SimpleConsumer =

    new SimpleConsumer(host, port, config.socketTimeoutMs,

      config.socketReceiveBufferBytes, config.clientId)

}

相關文章
相關標籤/搜索