寫在前面:本篇文章是關於使用@Async進行異步任務,而且關於線程池作了一個初步的梳理和總結,包括遇到過的一些坑html
如下代碼已作脫敏處理java
1.newCachedThreadPoolredis
private void startTask(List<String> usersList){
ExecutorService executor = Executors.newCachedThreadPool();
executor.submit(()->{
//do someting
});
}
複製代碼
2.newScheduledThreadPool算法
@Configuration
public class ScheduleConfig implements SchedulingConfigurer {
@Override
public void configureTasks(ScheduledTaskRegistrar taskRegistrar) {
//固然了,這裏設置的線程池是corePoolSize也是很關鍵了,本身根據業務需求設定
taskRegistrar.setScheduler(Executors.newScheduledThreadPool(10));
}
}
複製代碼
若是在idea中安裝了阿里規範插件,就會發現上面兩種建立線程池的方式都會報紅。緣由是:spring
線程池不容許使用Executors去建立,而是經過ThreadPoolExecutor的方式,這樣的處理方式讓寫的同窗更加明確線程池的運行規則,規避資源耗盡的風險。 說明:Executors返回的線程池對象的弊端以下:數據庫
FixedThreadPool和SingleThreadPool:json
容許的請求隊列長度爲Integer.MAX_VALUE,可能會堆積大量的請求,從而致使OOM。c#
CachedThreadPool:緩存
容許的建立線程數量爲Integer.MAX_VALUE,可能會建立大量的線程,從而致使OOM。markdown
其實這裏CachedThreadPool和newScheduledThreadPool是同樣的,都是由於最大線程數被設置成了Integer.MAX_VALUE。
public ScheduledThreadPoolExecutor(int corePoolSize) {
super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
new DelayedWorkQueue());
}
複製代碼
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
複製代碼
在源碼中能夠看的出newCachedThreadPool使用的是synchronousqueue隊列,也能夠看做是一個長度爲1的BlockingQueue因此,再加上最大容許線程數爲Integer.MAX_VALUE,就致使可能會建立大量線程致使OOM。
同理ScheduledThreadPoolExecutor使用的是DelayedWorkQueue,初始化大小爲16。當隊列滿後就會建立新線程,就致使可能會建立大量線程致使OOM。
咱們不妨實際來測試一下,以newCachedThreadPool爲例,jvm參數-Xms64m -Xmx192m -Xss1024K -XX:MetaspaceSize=64m -XX:MaxMetaspaceSize=128m。
@PostMapping("/newCachedThreadPoolExample")
@ResponseBody
public void newCachedThreadPoolExample(){
ExecutorService executorService = Executors.newCachedThreadPool();
while (true){
executorService.submit(()->{
log.info("submit:"+LocalDateTime.now());
try {
Thread.sleep(1000);
}catch (InterruptedException e){
e.printStackTrace();
}
});
}
}
複製代碼
剛啓動時的狀況:
請求接口後就開始爆炸
而後就開始卡着不動了
比較尷尬的是一直沒有出現報錯OOM的狀況,就直接卡死了。
總結
以上的線程池雖然能夠在外部限制的狀況下避免OOM等狀況,可是仍是建議儘可能根據本身的業務狀況自定義線程池。
1. application.yml
這裏是線程池相關配置,先不詳細說,同理能夠在代碼裏面配置config。
以上發生的問題大多數都和線程池的緩衝隊列有關,選擇一個符合本身業務特色的緩衝隊列也十分重要。
spring:
task:
execution:
pool:
# 最大線程數
max-size: 16
# 核心線程數
core-size: 16
# 存活時間
keep-alive: 10s
# 隊列大小
queue-capacity: 100
# 是否容許核心線程超時
allow-core-thread-timeout: true
# 線程名稱前綴
thread-name-prefix: async-task-
複製代碼
2.ThreadpoolApplication
這裏須要在 Application上添加 @EnableAsync註解,開啓異步任務。若是是選擇在代碼裏面寫config,則須要在config文件上添加@EnableAsync註解。
@EnableAsync
@SpringBootApplication
public class ThreadpoolApplication {
public static void main(String[] args) {
SpringApplication.run(ThreadpoolApplication.class, args);
}
}
複製代碼
3.AsyncTask
編寫一個異步任務處理類,在須要開啓異步的方法上面添加@Async
@Component
@Slf4j
public class AsyncTask {
@Async
public void asyncRun() throws InterruptedException {
Thread.sleep(10);
log.info(Thread.currentThread().getName()+":處理完成");
}
}
複製代碼
4.AsyncService
編寫一個調用異步方法的service
@Service
@Slf4j
public class AsyncService {
@Autowired
private AsyncTask asyncTask;
public void asyncSimpleExample() {
try {
log.info("service start");
asyncTask.asyncRun();
log.info("service end");
}catch (InterruptedException e){
e.printStackTrace();
}
}
}
複製代碼
5.AsyncController
編寫一個Controller去調用AsyncService
/** * @author kurtl */
@Controller
@RequestMapping("/")
public class AsyncController {
@Autowired
private AsyncService asyncService;
@PostMapping("/asyncSimpleExample")
@ResponseBody
public void asyncSimpleExample(){
asyncService.asyncSimpleExample();
}
}
複製代碼
最後請求這個接口
能夠看到,先輸出了asyncSimpleExample裏面打印的service start與service end,表示service方法先執行完畢了,而異步方法則在調用後進行了一個sleep,service沒有同步等待sleep完成,而是直接返回,表示這個是異步任務。至此咱們已經經過@Async成功建立的異步任務。
我的以爲源碼中很重要的一部分就是源碼中的註釋,閱讀註釋也能夠幫你快速瞭解源碼的做用等,全部我會把重要的註釋稍微翻譯一下
1.@Async源碼
@Target({ElementType.TYPE, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface Async {
/** * A qualifier value for the specified asynchronous operation(s). * <p>May be used to determine the target executor to be used when executing * the asynchronous operation(s), matching the qualifier value (or the bean * name) of a specific {@link java.util.concurrent.Executor Executor} or * {@link org.springframework.core.task.TaskExecutor TaskExecutor} * bean definition. * <p>When specified on a class-level {@code @Async} annotation, indicates that the * given executor should be used for all methods within the class. Method-level use * of {@code Async#value} always overrides any value set at the class level. * @since 3.1.2 */
/** * 在這些註釋中有三個很是重要的部分 * 1.使用@Async的方法只能返回Void 或者 Future類型 * 2.代表了@Async是經過org.springframework.core.task.TaskExecutor * 或者java.util.concurrent.Executor來建立線程池 * 3.寫了@Async的做用範圍 在類上使用@Async會覆蓋方法上的@Async */
String value() default "";
}
複製代碼
2.@EnableAsync源碼
/** * Enables Spring's asynchronous method execution capability, similar to functionality * found in Spring's {@code <task:*>} XML namespace. * * <p>To be used together with @{@link Configuration Configuration} classes as follows, * enabling annotation-driven async processing for an entire Spring application context: * * <pre class="code"> * @Configuration * @EnableAsync * public class AppConfig { * * }</pre> * 這裏表示須要聯合@Configuration註解一塊兒使用,因此@EnableAsync應該 * 添加在線程池Config或者SpringBootApplication 上 * {@code MyAsyncBean} is a user-defined type with one or more methods annotated with * either Spring's {@code @Async} annotation, the EJB 3.1 {@code @javax.ejb.Asynchronous} * annotation, or any custom annotation specified via the {@link #annotation} attribute. * The aspect is added transparently for any registered bean, for instance via this * configuration: * * <pre class="code"> * @Configuration * public class AnotherAppConfig { * * @Bean * public MyAsyncBean asyncBean() { * return new MyAsyncBean(); * } * }</pre> * * <p>By default, Spring will be searching for an associated thread pool definition: * either a unique {@link org.springframework.core.task.TaskExecutor} bean in the context, * or an {@link java.util.concurrent.Executor} bean named "taskExecutor" otherwise. If * neither of the two is resolvable, a {@link org.springframework.core.task.SimpleAsyncTaskExecutor} * 默認狀況下spring會先搜索TaskExecutor類型的bean或者名字爲 * taskExecutor的Executor類型的bean,都不存在使用 * SimpleAsyncTaskExecutor執行器可是這個SimpleAsyncTaskExecutor實際 * 上是有很大的坑的,建議是自定義一個線程池,這個後面會說 * will be used to process async method invocations. Besides, annotated methods having * * @author Chris Beams * @author Juergen Hoeller * @author Stephane Nicoll * @author Sam Brannen * @since 3.1 * @see Async * @see AsyncConfigurer * @see AsyncConfigurationSelector */
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Import(AsyncConfigurationSelector.class)
public @interface EnableAsync {
/** * Indicate the 'async' annotation type to be detected at either class * or method level. * <p>By default, both Spring's @{@link Async} annotation and the EJB 3.1 * {@code @javax.ejb.Asynchronous} annotation will be detected. * <p>This attribute exists so that developers can provide their own * custom annotation type to indicate that a method (or all methods of * a given class) should be invoked asynchronously. */
Class<? extends Annotation> annotation() default Annotation.class;
/** * Indicate whether subclass-based (CGLIB) proxies are to be created as opposed * to standard Java interface-based proxies. * <p><strong>Applicable only if the {@link #mode} is set to {@link AdviceMode#PROXY}</strong>. * <p>The default is {@code false}. * <p>Note that setting this attribute to {@code true} will affect <em>all</em> * Spring-managed beans requiring proxying, not just those marked with {@code @Async}. * For example, other beans marked with Spring's {@code @Transactional} annotation * will be upgraded to subclass proxying at the same time. This approach has no * negative impact in practice unless one is explicitly expecting one type of proxy * vs. another — for example, in tests. * * 這個字段用來表示,是否要建立基於CGLIB的代理,實際上在高版本 * 的spring 上(大概3.x)是自動選擇使用jdk動態代理仍是CGLIB. * 設置爲true時,其它spring管理的bean也會升級到CGLIB代理 */
boolean proxyTargetClass() default false;
/** * Indicate how async advice should be applied. * <p><b>The default is {@link AdviceMode#PROXY}.</b> * Please note that proxy mode allows for interception of calls through the proxy * only. Local calls within the same class cannot get intercepted that way; an * {@link Async} annotation on such a method within a local call will be ignored * since Spring's interceptor does not even kick in for such a runtime scenario. * For a more advanced mode of interception, consider switching this to * {@link AdviceMode#ASPECTJ}. * 這個字段用來標識異步通知的模式,默認PROXY,當這個字段爲 * PROXY的時候,在同一個類中,非異步方法調用異步方法,會致使異 * 步不生效,相反若是,想實現同一個類非異步方法調用異步方法就應 * 該設置爲ASPECTJ */
AdviceMode mode() default AdviceMode.PROXY;
/** * Indicate the order in which the {@link AsyncAnnotationBeanPostProcessor} * should be applied. * <p>The default is {@link Ordered#LOWEST_PRECEDENCE} in order to run * after all other post-processors, so that it can add an advisor to * existing proxies rather than double-proxy. * 標明異步註解bean處理器應該遵循的執行順序,默認最低的優先級 *(Integer.MAX_VALUE,值越小優先級越高) */
int order() default Ordered.LOWEST_PRECEDENCE;
}
複製代碼
在上面的源碼中,其實最核心的代碼只有一句,@Import(AsyncConfigurationSelector.class),引入了相關的配置。
/** * Selects which implementation of {@link AbstractAsyncConfiguration} should * be used based on the value of {@link EnableAsync#mode} on the importing * {@code @Configuration} class. * * @author Chris Beams * @author Juergen Hoeller * @since 3.1 * @see EnableAsync * @see ProxyAsyncConfiguration */
public class AsyncConfigurationSelector extends AdviceModeImportSelector<EnableAsync> {
private static final String ASYNC_EXECUTION_ASPECT_CONFIGURATION_CLASS_NAME =
"org.springframework.scheduling.aspectj.AspectJAsyncConfiguration";
/** * Returns {@link ProxyAsyncConfiguration} or {@code AspectJAsyncConfiguration} * for {@code PROXY} and {@code ASPECTJ} values of {@link EnableAsync#mode()}, * respectively. */
/** * 這整個方法其實就是一個選擇器和ImportSelector接口的selectImports()方法很像,基於不一樣的代理模式,加載不一樣的配置類 */
@Override
@Nullable
public String[] selectImports(AdviceMode adviceMode) {
switch (adviceMode) {
case PROXY:
return new String[] {ProxyAsyncConfiguration.class.getName()};
case ASPECTJ:
return new String[] {ASYNC_EXECUTION_ASPECT_CONFIGURATION_CLASS_NAME};
default:
return null;
}
}
}
複製代碼
接下來咱們看看默認的ProxyAsyncConfiguration.class
/** * {@code @Configuration} class that registers the Spring infrastructure beans necessary * to enable proxy-based asynchronous method execution. * * @author Chris Beams * @author Stephane Nicoll * @author Juergen Hoeller * @since 3.1 * @see EnableAsync * @see AsyncConfigurationSelector */
@Configuration
@Role(BeanDefinition.ROLE_INFRASTRUCTURE)
//繼承了AbstractAsyncConfiguration類
public class ProxyAsyncConfiguration extends AbstractAsyncConfiguration {
@Bean(name = TaskManagementConfigUtils.ASYNC_ANNOTATION_PROCESSOR_BEAN_NAME)
@Role(BeanDefinition.ROLE_INFRASTRUCTURE)
public AsyncAnnotationBeanPostProcessor asyncAdvisor() {
Assert.notNull(this.enableAsync, "@EnableAsync annotation metadata was not injected");
//初始化AsyncAnnotationBeanPostProcessor類型的bean
AsyncAnnotationBeanPostProcessor bpp = new AsyncAnnotationBeanPostProcessor();
//設置執行器和異常處理器
bpp.configure(this.executor, this.exceptionHandler);
Class<? extends Annotation> customAsyncAnnotation = this.enableAsync.getClass("annotation");
//設置annotation
if (customAsyncAnnotation != AnnotationUtils.getDefaultValue(EnableAsync.class, "annotation")) {
bpp.setAsyncAnnotationType(customAsyncAnnotation);
}
//設置註解屬性
bpp.setProxyTargetClass(this.enableAsync.getBoolean("proxyTargetClass"));
bpp.setOrder(this.enableAsync.<Integer>getNumber("order"));
return bpp;
}
}
複製代碼
這一個類繼承了AbstractAsyncConfiguration類,其實也就作了一件事初始化AsyncAnnotationBeanPostProcessor,@Async註解的就是經過AsyncAnnotationBeanPostProcessor這個後置處理器生成一個代理對象來實現異步的,咱們先看繼承的config。
/** * Abstract base {@code Configuration} class providing common structure for enabling * Spring's asynchronous method execution capability. * * @author Chris Beams * @author Juergen Hoeller * @author Stephane Nicoll * @since 3.1 * @see EnableAsync */
@Configuration
public abstract class AbstractAsyncConfiguration implements ImportAware {
@Nullable
protected AnnotationAttributes enableAsync; //;//enableAsync的註解屬性
@Nullable
protected Supplier<Executor> executor; //線程執行器
@Nullable
protected Supplier<AsyncUncaughtExceptionHandler> exceptionHandler; //異常處理器 和上面的代碼對應
@Override
//設置註解屬性
public void setImportMetadata(AnnotationMetadata importMetadata) {
this.enableAsync = AnnotationAttributes.fromMap(
importMetadata.getAnnotationAttributes(EnableAsync.class.getName(), false));
if (this.enableAsync == null) {
throw new IllegalArgumentException(
"@EnableAsync is not present on importing class " + importMetadata.getClassName());
}
}
/** * Collect any {@link AsyncConfigurer} beans through autowiring. */
@Autowired(required = false)
//設置執行器和異常處理器
void setConfigurers(Collection<AsyncConfigurer> configurers) {
if (CollectionUtils.isEmpty(configurers)) {
return;
}
if (configurers.size() > 1) {
throw new IllegalStateException("Only one AsyncConfigurer may exist");
}
AsyncConfigurer configurer = configurers.iterator().next();
this.executor = configurer::getAsyncExecutor;
this.exceptionHandler = configurer::getAsyncUncaughtExceptionHandler;
}
}
複製代碼
整個代碼的結構其實很是明確,咱們回到上一個類,看他設置的bean AsyncAnnotationBeanPostProcessor。這個bean很複雜,因此乾脆先生成類圖。弄清楚baen的生命週期。AsyncAnnotationBeanPostProcessor是一個後置處理器,因此咱們先找父類AbstractAdvisingBeanPostProcessor中。
/** * Base class for {@link BeanPostProcessor} implementations that apply a * Spring AOP {@link Advisor} to specific beans. * * @author Juergen Hoeller * @since 3.2 */
@SuppressWarnings("serial")
public abstract class AbstractAdvisingBeanPostProcessor extends ProxyProcessorSupport implements BeanPostProcessor {
@Nullable
protected Advisor advisor;
protected boolean beforeExistingAdvisors = false;
private final Map<Class<?>, Boolean> eligibleBeans = new ConcurrentHashMap<>(256);
public void setBeforeExistingAdvisors(boolean beforeExistingAdvisors) {
this.beforeExistingAdvisors = beforeExistingAdvisors;
}
@Override
public Object postProcessBeforeInitialization(Object bean, String beanName) {
return bean;
}
@Override
public Object postProcessAfterInitialization(Object bean, String beanName) {
// 沒有通知,或者是AopInfrastructureBean,那麼不進行代理
if (this.advisor == null || bean instanceof AopInfrastructureBean) {
// Ignore AOP infrastructure such as scoped proxies.
return bean;
}
// 添加advisor
if (bean instanceof Advised) {
Advised advised = (Advised) bean;
if (!advised.isFrozen() && isEligible(AopUtils.getTargetClass(bean))) {
// Add our local Advisor to the existing proxy's Advisor chain...
// 這裏經過beforeExistingAdvisors決定是將通知添加到全部通知以前仍是添加到全部通知以後
// 默認false 在@Async中被設置爲true
if (this.beforeExistingAdvisors) {
advised.addAdvisor(0, this.advisor);
}
else {
advised.addAdvisor(this.advisor);
}
return bean;
}
}
//構造ProxyFactory代理工廠
if (isEligible(bean, beanName)) {
ProxyFactory proxyFactory = prepareProxyFactory(bean, beanName);
//添加代理的接口
if (!proxyFactory.isProxyTargetClass()) {
evaluateProxyInterfaces(bean.getClass(), proxyFactory);
}
//設置切面
proxyFactory.addAdvisor(this.advisor);
customizeProxyFactory(proxyFactory);
//返回代理類
return proxyFactory.getProxy(getProxyClassLoader());
}
// No proxy needed.
return bean;
}
//isEligible用於判斷這個類或者這個類中的某個方法是否含有註解
protected boolean isEligible(Object bean, String beanName) {
return isEligible(bean.getClass());
}
}
複製代碼
在上面代碼中能夠看出來,proxyFactory.addAdvisor(this.advisor);這裏持有一個AsyncAnnotationAdvisor類的對象advisor:buildAdvice()方法生成通知,buildPointcut生成切點。定位到這個類的buildPointcut方法中,看看他的切點匹配規則。
@SuppressWarnings("serial")
public class AsyncAnnotationAdvisor extends AbstractPointcutAdvisor implements BeanFactoryAware {
private Advice advice;
private Pointcut pointcut;
/** * Create a new {@code AsyncAnnotationAdvisor} for bean-style configuration. */
public AsyncAnnotationAdvisor() {
this((Supplier<Executor>) null, (Supplier<AsyncUncaughtExceptionHandler>) null);
}
@SuppressWarnings("unchecked")
public AsyncAnnotationAdvisor( @Nullable Executor executor, @Nullable AsyncUncaughtExceptionHandler exceptionHandler) {
this(SingletonSupplier.ofNullable(executor), SingletonSupplier.ofNullable(exceptionHandler));
}
@SuppressWarnings("unchecked")
public AsyncAnnotationAdvisor( @Nullable Supplier<Executor> executor, @Nullable Supplier<AsyncUncaughtExceptionHandler> exceptionHandler) {
Set<Class<? extends Annotation>> asyncAnnotationTypes = new LinkedHashSet<>(2);
asyncAnnotationTypes.add(Async.class);
try {
asyncAnnotationTypes.add((Class<? extends Annotation>)
ClassUtils.forName("javax.ejb.Asynchronous", AsyncAnnotationAdvisor.class.getClassLoader()));
}
catch (ClassNotFoundException ex) {
// If EJB 3.1 API not present, simply ignore.
}
this.advice = buildAdvice(executor, exceptionHandler);
this.pointcut = buildPointcut(asyncAnnotationTypes);
}
public void setAsyncAnnotationType(Class<? extends Annotation> asyncAnnotationType) {
Assert.notNull(asyncAnnotationType, "'asyncAnnotationType' must not be null");
Set<Class<? extends Annotation>> asyncAnnotationTypes = new HashSet<>();
asyncAnnotationTypes.add(asyncAnnotationType);
this.pointcut = buildPointcut(asyncAnnotationTypes);
}
/** * Set the {@code BeanFactory} to be used when looking up executors by qualifier. */
@Override
public void setBeanFactory(BeanFactory beanFactory) {
if (this.advice instanceof BeanFactoryAware) {
((BeanFactoryAware) this.advice).setBeanFactory(beanFactory);
}
}
@Override
public Advice getAdvice() {
return this.advice;
}
@Override
public Pointcut getPointcut() {
return this.pointcut;
}
//構建通知,一個簡單的攔截器
protected Advice buildAdvice( @Nullable Supplier<Executor> executor, @Nullable Supplier<AsyncUncaughtExceptionHandler> exceptionHandler) {
AnnotationAsyncExecutionInterceptor interceptor = new AnnotationAsyncExecutionInterceptor(null);
interceptor.configure(executor, exceptionHandler);
return interceptor;
}
protected Pointcut buildPointcut(Set<Class<? extends Annotation>> asyncAnnotationTypes) {
ComposablePointcut result = null;
for (Class<? extends Annotation> asyncAnnotationType : asyncAnnotationTypes) {
// 根據cpc和mpc 匹配器進行匹配
//檢查類上是否有@Async註解
Pointcut cpc = new AnnotationMatchingPointcut(asyncAnnotationType, true);
//檢查方法是是否有@Async註解。
Pointcut mpc = new AnnotationMatchingPointcut(null, asyncAnnotationType, true);
if (result == null) {
result = new ComposablePointcut(cpc);
}
else {
result.union(cpc);
}
result = result.union(mpc);
}
return (result != null ? result : Pointcut.TRUE);
}
}
複製代碼
再找到它的通知邏輯buildAdvice,就是一個攔截器,生成AnnotationAsyncExecutionInterceptor對象,對於Interceptor,關注它的核心方法invoke就好了。它的父類AsyncExecutionInterceptor重寫了AsyncExecutionInterceptor接口的invoke方法。代碼以下
public class AsyncExecutionInterceptor extends AsyncExecutionAspectSupport implements MethodInterceptor, Ordered {
public AsyncExecutionInterceptor(@Nullable Executor defaultExecutor) {
super(defaultExecutor);
}
public AsyncExecutionInterceptor(@Nullable Executor defaultExecutor, AsyncUncaughtExceptionHandler exceptionHandler) {
super(defaultExecutor, exceptionHandler);
}
@Override
@Nullable
//
public Object invoke(final MethodInvocation invocation) throws Throwable {
Class<?> targetClass = (invocation.getThis() != null ? AopUtils.getTargetClass(invocation.getThis()) : null);
Method specificMethod = ClassUtils.getMostSpecificMethod(invocation.getMethod(), targetClass);
final Method userDeclaredMethod = BridgeMethodResolver.findBridgedMethod(specificMethod);
// 獲取到一個線程池
AsyncTaskExecutor executor = determineAsyncExecutor(userDeclaredMethod);
if (executor == null) {
throw new IllegalStateException(
"No executor specified and no default executor set on AsyncExecutionInterceptor either");
}
// 而後將這個方法封裝成一個 Callable對象傳入到線程池中執行
Callable<Object> task = () -> {
try {
Object result = invocation.proceed();
if (result instanceof Future) {
//阻塞等待執行完畢獲得結果
return ((Future<?>) result).get();
}
}
catch (ExecutionException ex) {
handleError(ex.getCause(), userDeclaredMethod, invocation.getArguments());
}
catch (Throwable ex) {
handleError(ex, userDeclaredMethod, invocation.getArguments());
}
return null;
};
return doSubmit(task, executor, invocation.getMethod().getReturnType());
}
@Override
@Nullable
protected String getExecutorQualifier(Method method) {
return null;
}
@Override
@Nullable
protected Executor getDefaultExecutor(@Nullable BeanFactory beanFactory) {
Executor defaultExecutor = super.getDefaultExecutor(beanFactory);
return (defaultExecutor != null ? defaultExecutor : new SimpleAsyncTaskExecutor());
}
@Override
public int getOrder() {
return Ordered.HIGHEST_PRECEDENCE;
}
}
複製代碼
能夠看到,invoke首先是包裝了一個Callable的對象,而後傳入doSubmit,因此代碼的核心就在doSubmit這個方法中。
@Nullable
protected Object doSubmit(Callable<Object> task, AsyncTaskExecutor executor, Class<?> returnType) {
//先判斷是否存在CompletableFuture這個類,優先使用CompletableFuture執行任務
if (CompletableFuture.class.isAssignableFrom(returnType)) {
return CompletableFuture.supplyAsync(() -> {
try {
return task.call();
}
catch (Throwable ex) {
throw new CompletionException(ex);
}
}, executor);
}
else if (ListenableFuture.class.isAssignableFrom(returnType)) {
return ((AsyncListenableTaskExecutor) executor).submitListenable(task);
}
else if (Future.class.isAssignableFrom(returnType)) {
return executor.submit(task);
}
else {
executor.submit(task);
return null;
}
}
複製代碼
這裏主要是判斷不一樣的返回值,最終都走進了submit方法,而submit根據線程池的不一樣,其實現也有區別,下面是SimpleAsyncTaskExecutor的實現方式。
/** * Template method for the actual execution of a task. * <p>The default implementation creates a new Thread and starts it. * @param task the Runnable to execute * @see #setThreadFactory * @see #createThread * @see java.lang.Thread#start() */
protected void doExecute(Runnable task) {
Thread thread = (this.threadFactory != null ? this.threadFactory.newThread(task) : createThread(task));
thread.start();
}
複製代碼
1.使用@Async必定要定義線程池
在上面的源碼中寫的很清楚,默認狀況下spring會先搜索TaskExecutor類型的bean或者名字爲taskExecutor的Executor類型的bean,都不存在使 SimpleAsyncTaskExecutor執行器。可是這個SimpleAsyncTaskExecutor不是真的線程池,這個類不重用線程,每次調用都會建立一個新的線程。頗有可能致使OOM。
@SuppressWarnings("serial")
public class SimpleAsyncTaskExecutor extends CustomizableThreadCreator implements AsyncListenableTaskExecutor, Serializable {
/** * Permit any number of concurrent invocations: that is, don't throttle concurrency. * @see ConcurrencyThrottleSupport#UNBOUNDED_CONCURRENCY */
public static final int UNBOUNDED_CONCURRENCY = ConcurrencyThrottleSupport.UNBOUNDED_CONCURRENCY;
/** * Switch concurrency 'off': that is, don't allow any concurrent invocations. * @see ConcurrencyThrottleSupport#NO_CONCURRENCY */
public static final int NO_CONCURRENCY = ConcurrencyThrottleSupport.NO_CONCURRENCY;
/** Internal concurrency throttle used by this executor. */
private final ConcurrencyThrottleAdapter concurrencyThrottle = new ConcurrencyThrottleAdapter();
@Nullable
private ThreadFactory threadFactory;
@Nullable
private TaskDecorator taskDecorator;
/** * Create a new SimpleAsyncTaskExecutor with default thread name prefix. */
public SimpleAsyncTaskExecutor() {
super();
}
/** * Create a new SimpleAsyncTaskExecutor with the given thread name prefix. * @param threadNamePrefix the prefix to use for the names of newly created threads */
public SimpleAsyncTaskExecutor(String threadNamePrefix) {
super(threadNamePrefix);
}
/** * Create a new SimpleAsyncTaskExecutor with the given external thread factory. * @param threadFactory the factory to use for creating new Threads */
public SimpleAsyncTaskExecutor(ThreadFactory threadFactory) {
this.threadFactory = threadFactory;
}
/** * Specify an external factory to use for creating new Threads, * instead of relying on the local properties of this executor. * <p>You may specify an inner ThreadFactory bean or also a ThreadFactory reference * obtained from JNDI (on a Java EE 6 server) or some other lookup mechanism. * @see #setThreadNamePrefix * @see #setThreadPriority */
public void setThreadFactory(@Nullable ThreadFactory threadFactory) {
this.threadFactory = threadFactory;
}
/** * Return the external factory to use for creating new Threads, if any. */
@Nullable
public final ThreadFactory getThreadFactory() {
return this.threadFactory;
}
public final void setTaskDecorator(TaskDecorator taskDecorator) {
this.taskDecorator = taskDecorator;
}
//這裏能夠設置最大線程數,經過限流去限制線程數
public void setConcurrencyLimit(int concurrencyLimit) {
this.concurrencyThrottle.setConcurrencyLimit(concurrencyLimit);
}
/** * Return the maximum number of parallel accesses allowed. */
public final int getConcurrencyLimit() {
return this.concurrencyThrottle.getConcurrencyLimit();
}
/** * Return whether this throttle is currently active. * @return {@code true} if the concurrency limit for this instance is active * @see #getConcurrencyLimit() * @see #setConcurrencyLimit */
public final boolean isThrottleActive() {
return this.concurrencyThrottle.isThrottleActive();
}
/** * Executes the given task, within a concurrency throttle * if configured (through the superclass's settings). * @see #doExecute(Runnable) */
@Override
public void execute(Runnable task) {
execute(task, TIMEOUT_INDEFINITE);
}
/** * Executes the given task, within a concurrency throttle * if configured (through the superclass's settings). * <p>Executes urgent tasks (with 'immediate' timeout) directly, * bypassing the concurrency throttle (if active). All other * tasks are subject to throttling. * @see #TIMEOUT_IMMEDIATE * @see #doExecute(Runnable) */
//
@Override
public void execute(Runnable task, long startTimeout) {
Assert.notNull(task, "Runnable must not be null");
Runnable taskToUse = (this.taskDecorator != null ? this.taskDecorator.decorate(task) : task);
if (isThrottleActive() && startTimeout > TIMEOUT_IMMEDIATE) {
this.concurrencyThrottle.beforeAccess();
doExecute(new ConcurrencyThrottlingRunnable(taskToUse));
}
else {
doExecute(taskToUse);
}
}
@Override
public Future<?> submit(Runnable task) {
FutureTask<Object> future = new FutureTask<>(task, null);
execute(future, TIMEOUT_INDEFINITE);
return future;
}
@Override
public <T> Future<T> submit(Callable<T> task) {
FutureTask<T> future = new FutureTask<>(task);
execute(future, TIMEOUT_INDEFINITE);
return future;
}
@Override
public ListenableFuture<?> submitListenable(Runnable task) {
ListenableFutureTask<Object> future = new ListenableFutureTask<>(task, null);
execute(future, TIMEOUT_INDEFINITE);
return future;
}
@Override
public <T> ListenableFuture<T> submitListenable(Callable<T> task) {
ListenableFutureTask<T> future = new ListenableFutureTask<>(task);
execute(future, TIMEOUT_INDEFINITE);
return future;
}
/** * Template method for the actual execution of a task. * <p>The default implementation creates a new Thread and starts it. * @param task the Runnable to execute * @see #setThreadFactory * @see #createThread * @see java.lang.Thread#start() */
//判斷是否有工廠,沒有的話調用父類建立線程
protected void doExecute(Runnable task) {
Thread thread = (this.threadFactory != null ? this.threadFactory.newThread(task) : createThread(task));
thread.start();
}
/** * Subclass of the general ConcurrencyThrottleSupport class, * making {@code beforeAccess()} and {@code afterAccess()} * visible to the surrounding class. */
private static class ConcurrencyThrottleAdapter extends ConcurrencyThrottleSupport {
@Override
protected void beforeAccess() {
super.beforeAccess();
}
@Override
protected void afterAccess() {
super.afterAccess();
}
}
/** * This Runnable calls {@code afterAccess()} after the * target Runnable has finished its execution. */
private class ConcurrencyThrottlingRunnable implements Runnable {
private final Runnable target;
public ConcurrencyThrottlingRunnable(Runnable target) {
this.target = target;
}
@Override
public void run() {
try {
this.target.run();
}
finally {
concurrencyThrottle.afterAccess();
}
}
}
}
複製代碼
最主要的就是這段代碼
/** * Template method for the actual execution of a task. * <p>The default implementation creates a new Thread and starts it. * @param task the Runnable to execute * @see #setThreadFactory * @see #createThread * @see java.lang.Thread#start() */
//判斷是否有工廠,沒有的話調用父類建立線程
protected void doExecute(Runnable task) {
Thread thread = (this.threadFactory != null ? this.threadFactory.newThread(task) : createThread(task));
thread.start();
}
複製代碼
這裏並非用線程池,而是直接建立新的線程,因此會大量建立線程致使OOM。其實這個類是能夠經過setConcurrencyLimit設置最大線程數,經過synchronized和wati and notify去進行限流,這裏不展開講。因此結論是在使用@Async必定要設置線程池。
如下代碼已作脫敏處理
在看公司代碼的時候,發現這樣一段代碼
public UserVO saveUser(HttpServletRequest request, String source) {
String token = RequestUtils.getToken(request);
String uid = checkUserLoginReturnUid(token);
log.info("註冊登陸, token : {}, uid : {}", token, uid);
//獲取用戶信息
User User = getLoginUser(uid);
if(User == null){
User = new User();
//獲取用戶信息
Map<String,String> userMap = redisTemplateMain.getUserMapByToken(token);
//保存用戶
saveUser(User, userMap, source);
sendUserSystem(Integer.valueOf(userMap.get("id")));
}
//用戶信息放進緩存
setAuth2Redis(User);
return setUser2Redis(User);
}
//通知用戶系統,咱們這邊成功註冊了一個用戶
@Async
public void sendUserSystem(Integer userId){
Map<String,Object> map = new HashMap<>();
map.put("mainUid", userId);
map.put("source", "");
String json = HttpUtil.post(property.userRegisterSendSystem, map);
log.info("sendUserSystem userId : {}, json : {}", userId, json);
}
複製代碼
在以前咱們看源碼的時候已經知道了,因爲@Async的AdviceMode默認爲PROXY,因此當調用方和被調用方是在同一個類中,沒法產生切面,@Async沒有被Spring容器管理。 因此這個方法跑了這麼久一直是同步。
咱們能夠寫一個方法去測試一下。
public void asyncInvalid() {
try {
log.info("service start");
asyncInvalidExample();
log.info("service end");
}catch (InterruptedException e){
e.printStackTrace();
}
}
@Async
public void asyncInvalidExample() throws InterruptedException{
Thread.sleep(10);
log.info(Thread.currentThread().getName()+":處理完成");
}
複製代碼
調用結果很明顯,沒有進行異步操做,而是同步。
既然線程池都已一個緩衝隊列來保存未被消費的任務,那麼就必定存在隊列被塞滿,致使線程丟失的狀況。咱們寫一段代碼模擬一下。
配置文件
spring:
task:
execution:
pool:
# 最大線程數
max-size: 16
# 核心線程數
core-size: 16
# 存活時間
keep-alive: 10s
# 隊列大小
queue-capacity: 100
# 是否容許核心線程超時
allow-core-thread-timeout: true
# 線程名稱前綴
thread-name-prefix: async-task-
複製代碼
異步方法
@Async
public void asyncRefuseRun() throws InterruptedException {
Thread.sleep(5000000);
}
複製代碼
調用方法
public void asyncRefuseRun() {
for (int t = 0;t<2000;t++){
log.info(""+t);
try {
asyncTask.asyncRefuseRun();
}catch (InterruptedException e){
e.printStackTrace();
}
}
}
複製代碼
這裏我循環了2000個線程,理論上來講當線程到達maxPoolSize + queueCapacity時會進行拒絕,也就是16+100。
到了116的時候果真拋出了異常java.util.concurrent.RejectedExecutionException。證實線程執行了它的拒絕策略。
要理解線程池的拒絕策略,先來看看它的接口。
public interface RejectedExecutionHandler {
void rejectedExecution(Runnable r, ThreadPoolExecutor executor);
}
複製代碼
當線程池出現拒絕的狀況,就會來調用你設置的拒絕策略,將當前提交的任務以及線程池實例自己傳遞給你處理。這裏建議根據本身的業務場景,去實現拒絕策略。
固然若是JDK內置的實現能夠知足當前業務,能夠直接用jdk實現的。
AbortPolicy(停止策略)
這個停止策略就是咱們剛剛演示的,觸發拒絕策略後,直接停止任務,拋出異常,這個也是ThreadPoolExecutor默認實現。
/** * A handler for rejected tasks that throws a * {@code RejectedExecutionException}. */
public static class AbortPolicy implements RejectedExecutionHandler {
/** * Creates an {@code AbortPolicy}. */
public AbortPolicy() { }
/** * Always throws RejectedExecutionException. * * @param r the runnable task requested to be executed * @param e the executor attempting to execute this task * @throws RejectedExecutionException always */
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
throw new RejectedExecutionException("Task " + r.toString() +
" rejected from " +
e.toString());
}
}
複製代碼
DiscardPolicy(丟棄策略)
/** * A handler for rejected tasks that silently discards the * rejected task. */
public static class DiscardPolicy implements RejectedExecutionHandler {
/** * Creates a {@code DiscardPolicy}. */
public DiscardPolicy() { }
/** * Does nothing, which has the effect of discarding task r. * * @param r the runnable task requested to be executed * @param e the executor attempting to execute this task */
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
}
}
複製代碼
很明顯,啥也不幹,就是一個空實現。
DiscardOldestPolicy(棄老策略)
/** * A handler for rejected tasks that discards the oldest unhandled * request and then retries {@code execute}, unless the executor * is shut down, in which case the task is discarded. */
public static class DiscardOldestPolicy implements RejectedExecutionHandler {
/** * Creates a {@code DiscardOldestPolicy} for the given executor. */
public DiscardOldestPolicy() { }
/** * Obtains and ignores the next task that the executor * would otherwise execute, if one is immediately available, * and then retries execution of task r, unless the executor * is shut down, in which case task r is instead discarded. * * @param r the runnable task requested to be executed * @param e the executor attempting to execute this task */
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
e.getQueue().poll();
e.execute(r);
}
}
}
複製代碼
若是線程池未關閉,就彈出隊列頭部的元素,而後嘗試執行。實際上仍是會丟棄任務,若是頭部元素執行失敗,就丟棄了。區別是優先丟棄的是老的元素。
CallerRunsPolicy(調用者運行策略)
/** * A handler for rejected tasks that runs the rejected task * directly in the calling thread of the {@code execute} method, * unless the executor has been shut down, in which case the task * is discarded. */
public static class CallerRunsPolicy implements RejectedExecutionHandler {
/** * Creates a {@code CallerRunsPolicy}. */
public CallerRunsPolicy() { }
/** * Executes task r in the caller's thread, unless the executor * has been shut down, in which case the task is discarded. * * @param r the runnable task requested to be executed * @param e the executor attempting to execute this task */
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
r.run();
}
}
}
複製代碼
當觸發拒絕策略時,判斷線程池有沒有關閉,沒有關閉就由提交任務的當前線程處理。可是當大量提交後就會阻塞線程,致使性能下降。
hutool中的線程池拒絕策略實現
hutool做爲咱們常用的一個工具類,也有線程池工具,咱們不如來看看它是如何實現的。
/** * 構建ThreadPoolExecutor * * @param builder {@link ExecutorBuilder} * @return {@link ThreadPoolExecutor} */
private static ThreadPoolExecutor build(ExecutorBuilder builder) {
final int corePoolSize = builder.corePoolSize;
final int maxPoolSize = builder.maxPoolSize;
final long keepAliveTime = builder.keepAliveTime;
final BlockingQueue<Runnable> workQueue;
if (null != builder.workQueue) {
workQueue = builder.workQueue;
} else {
// corePoolSize爲0則要使用SynchronousQueue避免無限阻塞
workQueue = (corePoolSize <= 0) ? new SynchronousQueue<>() : new LinkedBlockingQueue<>(DEFAULT_QUEUE_CAPACITY);
}
final ThreadFactory threadFactory = (null != builder.threadFactory) ? builder.threadFactory : Executors.defaultThreadFactory();
RejectedExecutionHandler handler = ObjectUtil.defaultIfNull(builder.handler, new ThreadPoolExecutor.AbortPolicy());
final ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(//
corePoolSize, //
maxPoolSize, //
keepAliveTime, TimeUnit.NANOSECONDS, //
workQueue, //
threadFactory, //
handler//
);
if (null != builder.allowCoreThreadTimeOut) {
threadPoolExecutor.allowCoreThreadTimeOut(builder.allowCoreThreadTimeOut);
}
return threadPoolExecutor;
}
複製代碼
能夠很清晰的看到,會判斷是否傳入線程池拒絕策略,若是沒有就用默認的AbortPolicy。
dubbo中的拒絕策略
public class AbortPolicyWithReport extends ThreadPoolExecutor.AbortPolicy {
protected static final Logger logger = LoggerFactory.getLogger(AbortPolicyWithReport.class);
private final String threadName;
private final URL url;
private static volatile long lastPrintTime = 0;
private static Semaphore guard = new Semaphore(1);
public AbortPolicyWithReport(String threadName, URL url) {
this.threadName = threadName;
this.url = url;
}
@Override
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
String msg = String.format("Thread pool is EXHAUSTED!" +
" Thread Name: %s, Pool Size: %d (active: %d, core: %d, max: %d, largest: %d), Task: %d (completed: %d)," +
" Executor status:(isShutdown:%s, isTerminated:%s, isTerminating:%s), in %s://%s:%d!",
threadName, e.getPoolSize(), e.getActiveCount(), e.getCorePoolSize(), e.getMaximumPoolSize(), e.getLargestPoolSize(),
e.getTaskCount(), e.getCompletedTaskCount(), e.isShutdown(), e.isTerminated(), e.isTerminating(),
url.getProtocol(), url.getIp(), url.getPort());
logger.warn(msg);
dumpJStack();
throw new RejectedExecutionException(msg);
}
private void dumpJStack() {
//省略實現
}
}
複製代碼
dubbo的策略實現主要就是想讓開發人員知道拒絕任務的狀況以及緣由。它先輸出了線程池的詳細設置參數,以及線程池當前的狀態,還有當前拒絕任務的信息。而後又輸出了當前線程堆棧詳情在dumpJStack中實現,最後拋出RejectedExecutionException。
Netty中的線程池拒絕策略
private static final class NewThreadRunsPolicy implements RejectedExecutionHandler {
NewThreadRunsPolicy() {
super();
}
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
try {
final Thread t = new Thread(r, "Temporary task executor");
t.start();
} catch (Throwable e) {
throw new RejectedExecutionException(
"Failed to start a new thread", e);
}
}
}
複製代碼
Netty的線程池拒絕策略很像CallerRunsPolicy(調用者運行策略),都是不會直接丟棄任務而是繼續處理任務,不一樣的地方是CallerRunsPolicy(調用者運行策略)是在調用線程繼續處理,而Netty是new了一個新線程去處理。
activeMq中的線程池拒絕策略
new RejectedExecutionHandler() {
@Override
public void rejectedExecution(final Runnable r, final ThreadPoolExecutor executor) {
try {
executor.getQueue().offer(r, 60, TimeUnit.SECONDS);
} catch (InterruptedException e) {
throw new RejectedExecutionException("Interrupted waiting for BrokerService.worker");
}
throw new RejectedExecutionException("Timed Out while attempting to enqueue Task.");
}
});
複製代碼
activeMq中的策略屬於最大努力執行任務型,當觸發拒絕策略時,在嘗試一分鐘的時間從新將任務塞進任務隊列,當一分鐘超時還沒成功時,就拋出異常。
在開發中,咱們線程池的運行狀態,線程狀態,對咱們來講都很是重要。因此咱們應該把線程池監控起來。 咱們能夠經過擴展beforeExecute、afterExecute和terminated這三個方法去在執行前或執行後增長一些新的操做。用來記錄線程池的狀況。
方法 | 含義 |
---|---|
shutdown() | 線程池延遲關閉時(等待線程池裏的任務都執行完畢),統計已執行任務、正在執行任務、未執行任務數量 |
shutdownNow() | 任務執行以前,記錄任務開始時間,startTimes這個HashMap以任務的hashCode爲key,開始時間爲值 |
beforeExecute(Thread t, Runnable r) | 線程池延遲關閉時(等待線程池裏的任務都執行完畢),統計已執行任務、正在執行任務、未執行任務數量 |
afterExecute(Runnable r, Throwable t) | 任務執行以後,計算任務結束時間。統計任務耗時、初始線程數、核心線程數、正在執行的任務數量、已完成任務數量、任務總數、隊列裏緩存的任務數量、池中存在的最大線程數、最大容許的線程數、線程空閒時間、線程池是否關閉、線程池是否終止信息 |
package com.example.threadpool;
import lombok.extern.slf4j.Slf4j;
import java.util.Date;
import java.util.List;
import java.util.Objects;
import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicInteger;
/** * @author kurtl */
@Slf4j
public class ThreadPoolMonitor extends ThreadPoolExecutor {
/** * 保存任務開始執行的時間,當任務結束時,用任務結束時間減去開始時間計算任務執行時間 */
private final ConcurrentHashMap<String, Date> startTimes;
/** * 線程池名稱,通常以業務名稱命名,方便區分 */
private final String poolName;
/** * 調用父類的構造方法,並初始化HashMap和線程池名稱 * * @param corePoolSize 線程池核心線程數 * @param maximumPoolSize 線程池最大線程數 * @param keepAliveTime 線程的最大空閒時間 * @param unit 空閒時間的單位 * @param workQueue 保存被提交任務的隊列 * @param poolName 線程池名稱 */
public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, String poolName) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), poolName);
}
/** * 調用父類的構造方法,並初始化HashMap和線程池名稱 * * @param corePoolSize 線程池核心線程數 * @param maximumPoolSize 線程池最大線程數 * @param keepAliveTime 線程的最大空閒時間 * @param unit 空閒時間的單位 * @param workQueue 保存被提交任務的隊列 * @param threadFactory 線程工廠 * @param poolName 線程池名稱 */
public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, String poolName) {
super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory);
this.startTimes = new ConcurrentHashMap<>();
this.poolName = poolName;
}
/** * 線程池延遲關閉時(等待線程池裏的任務都執行完畢),統計線程池狀況 */
@Override
public void shutdown() {
// 統計已執行任務、正在執行任務、未執行任務數量
log.info("{} Going to shutdown. Executed tasks: {}, Running tasks: {}, Pending tasks: {}",
this.poolName, this.getCompletedTaskCount(), this.getActiveCount(), this.getQueue().size());
super.shutdown();
}
/** * 線程池當即關閉時,統計線程池狀況 */
@Override
public List<Runnable> shutdownNow() {
// 統計已執行任務、正在執行任務、未執行任務數量
log.info("{} Going to immediately shutdown. Executed tasks: {}, Running tasks: {}, Pending tasks: {}",
this.poolName, this.getCompletedTaskCount(), this.getActiveCount(), this.getQueue().size());
return super.shutdownNow();
}
/** * 任務執行以前,記錄任務開始時間 */
@Override
protected void beforeExecute(Thread t, Runnable r) {
startTimes.put(String.valueOf(r.hashCode()), new Date());
}
/** * 任務執行以後,計算任務結束時間 */
@Override
protected void afterExecute(Runnable r, Throwable t) {
Date startDate = startTimes.remove(String.valueOf(r.hashCode()));
Date finishDate = new Date();
long diff = finishDate.getTime() - startDate.getTime();
// 統計任務耗時、初始線程數、核心線程數、正在執行的任務數量、
// 已完成任務數量、任務總數、隊列裏緩存的任務數量、池中存在的最大線程數、
// 最大容許的線程數、線程空閒時間、線程池是否關閉、線程池是否終止
log.info("{}-pool-monitor: " +
"Duration: {} ms, PoolSize: {}, CorePoolSize: {}, Active: {}, " +
"Completed: {}, Task: {}, Queue: {}, LargestPoolSize: {}, " +
"MaximumPoolSize: {}, KeepAliveTime: {}, isShutdown: {}, isTerminated: {}",
this.poolName,
diff, this.getPoolSize(), this.getCorePoolSize(), this.getActiveCount(),
this.getCompletedTaskCount(), this.getTaskCount(), this.getQueue().size(), this.getLargestPoolSize(),
this.getMaximumPoolSize(), this.getKeepAliveTime(TimeUnit.MILLISECONDS), this.isShutdown(), this.isTerminated());
}
/** * 建立固定線程池,代碼源於Executors.newFixedThreadPool方法,這裏增長了poolName * * @param nThreads 線程數量 * @param poolName 線程池名稱 * @return ExecutorService對象 */
public static ExecutorService newFixedThreadPool(int nThreads, String poolName) {
return new ThreadPoolMonitor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<>(), poolName);
}
/** * 建立緩存型線程池,代碼源於Executors.newCachedThreadPool方法,這裏增長了poolName * * @param poolName 線程池名稱 * @return ExecutorService對象 */
public static ExecutorService newCachedThreadPool(String poolName) {
return new ThreadPoolMonitor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<>(), poolName);
}
/** * 生成線程池所用的線程,只是改寫了線程池默認的線程工廠,傳入線程池名稱,便於問題追蹤 */
static class EventThreadFactory implements ThreadFactory {
private static final AtomicInteger POOL_NUMBER = new AtomicInteger(1);
private final ThreadGroup group;
private final AtomicInteger threadNumber = new AtomicInteger(1);
private final String namePrefix;
/** * 初始化線程工廠 * * @param poolName 線程池名稱 */
EventThreadFactory(String poolName) {
SecurityManager s = System.getSecurityManager();
group = Objects.nonNull(s) ? s.getThreadGroup() : Thread.currentThread().getThreadGroup();
namePrefix = poolName + "-pool-" + POOL_NUMBER.getAndIncrement() + "-thread-";
}
@Override
public Thread newThread(Runnable r) {
Thread t = new Thread(group, r, namePrefix + threadNumber.getAndIncrement(), 0);
if (t.isDaemon())
t.setDaemon(false);
if (t.getPriority() != Thread.NORM_PRIORITY)
t.setPriority(Thread.NORM_PRIORITY);
return t;
}
}
}
複製代碼
線程池負載關注的核心問題是:基於當前線程池參數分配的資源夠不夠。對於這個問題,咱們能夠從事前和事中兩個角度來看。事前,線程池定義了「活躍度」這個概念,來讓用戶在發生Reject異常以前可以感知線程池負載問題,線程池活躍度計算公式爲:線程池活躍度 = activeCount/maximumPoolSize。這個公式表明當活躍線程數趨向於maximumPoolSize的時候,表明線程負載趨高。事中,也能夠從兩方面來看線程池的過載斷定條件,一個是發生了Reject異常,一個是隊列中有等待任務(支持定製閾值)。以上兩種狀況發生了都會觸發告警,告警信息會經過大象推送給服務所關聯的負責人。 ——美團技術文檔
如何合理的配置線程池參數,比較廣泛的說法是。
IO密集型 = 2Ncpu(能夠測試後本身控制大小,2Ncpu通常沒問題)(常出現於線程中:數據庫數據交互、文件上傳下載、網絡數據傳輸等等)
計算密集型 = Ncpu(常出現於線程中:複雜算法)
而這種方案沒有考慮多線程池的狀況,實際使用上也有偏離。
圖來自美團技術博客
因此參數的設置應該根據本身實際的應用場景定製。
通常在實際業務中,咱們會定義不一樣的線程池來處理不一樣的業務。利用咱們以前完成的ThreadPoolMonitor能夠很快的定義不一樣的線程。
ThreadPoolConfig
@EnableAsync
@Configuration
public class ThreadPoolConfig {
@Bean
public ThreadPoolExecutor test01(){
return new ThreadPoolMonitor(16,32,60, TimeUnit.SECONDS, new LinkedBlockingQueue<>(100),"test01");
}
@Bean
public ThreadPoolExecutor test02(){
return new ThreadPoolMonitor(8,16,60, TimeUnit.SECONDS, new LinkedBlockingQueue<>(100),"test02");
}
}
複製代碼
1.動態線程池 2.基於任務的線程池監控
做者水平有限,如有錯誤遺漏,請指出。
參考文章