本文主要研究一下zerolog的diode.Writergit
github.com/rs/zerolog@v1.20.0/diode/diode.gogithub
// Writer is a io.Writer wrapper that uses a diode to make Write lock-free, // non-blocking and thread safe. type Writer struct { w io.Writer d diodeFetcher c context.CancelFunc done chan struct{} } func NewWriter(w io.Writer, size int, pollInterval time.Duration, f Alerter) Writer { ctx, cancel := context.WithCancel(context.Background()) dw := Writer{ w: w, c: cancel, done: make(chan struct{}), } if f == nil { f = func(int) {} } d := diodes.NewManyToOne(size, diodes.AlertFunc(f)) if pollInterval > 0 { dw.d = diodes.NewPoller(d, diodes.WithPollingInterval(pollInterval), diodes.WithPollingContext(ctx)) } else { dw.d = diodes.NewWaiter(d, diodes.WithWaiterContext(ctx)) } go dw.poll() return dw }
diode.Writer是一個lock-free,non-blocking及thread safe的Writer;它藉助了diodes來實現;NewWriter會建立diode.Writer,並啓動dw.poll()
github.com/rs/zerolog@v1.20.0/diode/diode.gogolang
func (dw Writer) poll() { defer close(dw.done) for { d := dw.d.Next() if d == nil { return } p := *(*[]byte)(d) dw.w.Write(p) // Proper usage of a sync.Pool requires each entry to have approximately // the same memory cost. To obtain this property when the stored type // contains a variably-sized buffer, we add a hard limit on the maximum buffer // to place back in the pool. // // See https://golang.org/issue/23199 const maxSize = 1 << 16 // 64KiB if cap(p) <= maxSize { bufPool.Put(p[:0]) } } }
poll方法使用for循環執行dw.d.Next()及dw.w.Write(p)
github.com/rs/zerolog@v1.20.0/diode/diode.goapp
type diodeFetcher interface { diodes.Diode Next() diodes.GenericDataType } // Diode is any implementation of a diode. type Diode interface { Set(GenericDataType) TryNext() (GenericDataType, bool) }
diodeFetcher接口內嵌了Diode接口,定義了Next方法
github.com/rs/zerolog@v1.20.0/diode/internal/diodes/poller.goless
// Next polls the diode until data is available or until the context is done. // If the context is done, then nil will be returned. func (p *Poller) Next() GenericDataType { for { data, ok := p.Diode.TryNext() if !ok { if p.isDone() { return nil } time.Sleep(p.interval) continue } return data } }
Poller實現了diodeFetcher接口的Next方法,它使用for循環,不斷經過p.Diode.TryNext()來獲取data
github.com/rs/zerolog@v1.20.0/diode/internal/diodes/many_to_one.goide
// ManyToOne diode is optimal for many writers (go-routines B-n) and a single // reader (go-routine A). It is not thread safe for multiple readers. type ManyToOne struct { writeIndex uint64 readIndex uint64 buffer []unsafe.Pointer alerter Alerter } // Set sets the data in the next slot of the ring buffer. func (d *ManyToOne) Set(data GenericDataType) { for { writeIndex := atomic.AddUint64(&d.writeIndex, 1) idx := writeIndex % uint64(len(d.buffer)) old := atomic.LoadPointer(&d.buffer[idx]) if old != nil && (*bucket)(old) != nil && (*bucket)(old).seq > writeIndex-uint64(len(d.buffer)) { log.Println("Diode set collision: consider using a larger diode") continue } newBucket := &bucket{ data: data, seq: writeIndex, } if !atomic.CompareAndSwapPointer(&d.buffer[idx], old, unsafe.Pointer(newBucket)) { log.Println("Diode set collision: consider using a larger diode") continue } return } } // TryNext will attempt to read from the next slot of the ring buffer. // If there is not data available, it will return (nil, false). func (d *ManyToOne) TryNext() (data GenericDataType, ok bool) { // Read a value from the ring buffer based on the readIndex. idx := d.readIndex % uint64(len(d.buffer)) result := (*bucket)(atomic.SwapPointer(&d.buffer[idx], nil)) // When the result is nil that means the writer has not had the // opportunity to write a value into the diode. This value must be ignored // and the read head must not increment. if result == nil { return nil, false } // When the seq value is less than the current read index that means a // value was read from idx that was previously written but has since has // been dropped. This value must be ignored and the read head must not // increment. // // The simulation for this scenario assumes the fast forward occurred as // detailed below. // // 5. The reader reads again getting seq 5. It then reads again expecting // seq 6 but gets seq 2. This is a read of a stale value that was // effectively "dropped" so the read fails and the read head stays put. // `| 4 | 5 | 2 | 3 |` r: 7, w: 6 // if result.seq < d.readIndex { return nil, false } // When the seq value is greater than the current read index that means a // value was read from idx that overwrote the value that was expected to // be at this idx. This happens when the writer has lapped the reader. The // reader needs to catch up to the writer so it moves its write head to // the new seq, effectively dropping the messages that were not read in // between the two values. // // Here is a simulation of this scenario: // // 1. Both the read and write heads start at 0. // `| nil | nil | nil | nil |` r: 0, w: 0 // 2. The writer fills the buffer. // `| 0 | 1 | 2 | 3 |` r: 0, w: 4 // 3. The writer laps the read head. // `| 4 | 5 | 2 | 3 |` r: 0, w: 6 // 4. The reader reads the first value, expecting a seq of 0 but reads 4, // this forces the reader to fast forward to 5. // `| 4 | 5 | 2 | 3 |` r: 5, w: 6 // if result.seq > d.readIndex { dropped := result.seq - d.readIndex d.readIndex = result.seq d.alerter.Alert(int(dropped)) } // Only increment read index if a regular read occurred (where seq was // equal to readIndex) or a value was read that caused a fast forward // (where seq was greater than readIndex). // d.readIndex++ return result.data, true }
ManyToOne實現了Diode接口的Set和TryNext方法
func diodeDemo() { wr := diode.NewWriter(os.Stdout, 1000, 10*time.Millisecond, func(missed int) { fmt.Printf("Logger Dropped %d messages", missed) }) log := zerolog.New(wr) log.Print("test") time.Sleep(1 * time.Second) }
輸出ui
{"level":"debug","message":"test"}
zerolog藉助diodes提供了一個lock-free,non-blocking及thread safe的diode.Writerthis