你說我怎麼這麼菜呢?
T1:ios
考場上沒看到下取整,同時把那個sigma當作了次數,覺得要在mod phi(p)下算,這玩意能作?
而後果斷爆零......
其實puts(2的逆元)+puts("1")有25分......
正解看官方題解吧。app
那個鬼畜的容斥大概就是在n+1個斷點中欽定k個斷點,數字相對於剩下的m+1-k個集合的位置無關,因此對於這m+1-k個集合能夠隨意放置。
代碼:dom
1 #include<cstdio> 2 #include<algorithm> 3 typedef long long int lli; 4 const int maxn=1e5+1e2,maxl=262145; 5 const int mod=998244353,g=3; 6 7 lli fac[maxn],inv[maxn]; 8 lli lft[maxl],rit[maxl],tar[maxl]; 9 lli ans; 10 int n,m; 11 12 inline lli fastpow(lli base,int tim) { 13 lli ret = 1; 14 while( tim ) { 15 if( tim & 1 ) ret = ret * base % mod; 16 if( tim >>= 1 ) base = base * base % mod; 17 } 18 return ret; 19 } 20 inline void NTT(lli* dst,int n,int ope=1) { 21 for(int i=0,j=0;i<n;i++) { 22 if( i < j ) std::swap(dst[i],dst[j]); 23 for(int t=n>>1;(j^=t)<t;t>>=1); 24 } 25 for(int len=2;len<=n;len<<=1) { 26 const int h = len >> 1; 27 lli per = fastpow(g,mod/len); 28 if( !~ope ) per = fastpow(per,mod-2); 29 for(int st=0;st<n;st+=len) { 30 lli w = 1; 31 for(int pos=0;pos<h;pos++) { 32 const lli u = dst[st+pos] , v = dst[st+pos+h] * w % mod; 33 dst[st+pos] = ( u + v ) % mod , 34 dst[st+pos+h] = ( u - v + mod ) % mod , 35 w = w * per % mod; 36 } 37 } 38 } 39 if( !~ope ) { 40 const lli inv = fastpow(n,mod-2); 41 for(int i=0;i<n;i++) dst[i] = dst[i] * inv % mod; 42 } 43 } 44 45 inline lli c(int n,int m) { 46 return fac[n] * inv[m] % mod * inv[n-m] % mod; 47 } 48 inline void init() { 49 for(int i=0;i<=n+1;i++) { 50 lft[i] = ( i & 1 ) ? mod - c(n+1,i) : c(n+1,i); 51 rit[i] = fastpow(i,n); 52 } 53 } 54 inline void getans() { 55 init(); int len = 1; 56 while( len <= ( n << 1 ) + 1 ) len <<= 1; 57 NTT(lft,len) , NTT(rit,len); 58 for(int i=0;i<len;i++) tar[i] = lft[i] * rit[i] % mod; 59 NTT(tar,len,-1); 60 for(int i=0;i<=n;i++) ans = ( ans + tar[i+1] * fastpow(i,m) % mod ) % mod; 61 ans = ans * inv[n] % mod; 62 } 63 inline void pre() { 64 int lim = n + 1; 65 *fac = 1; 66 for(int i=1;i<=lim;i++) fac[i] = fac[i-1] * i % mod; 67 inv[lim] = fastpow(fac[lim],mod-2); 68 for(int i=lim;i;i--) inv[i-1] = inv[i] * i % mod; 69 } 70 71 int main() { 72 scanf("%d%d",&n,&m); 73 pre() , getans(); 74 printf("%lld\n",ans); 75 return 0; 76 }
T2:ide
n方暴力很好寫吧......
考慮二維平面,一條路徑至關於讓兩邊花式取min,而後不會寫了。
寫了一個大力random_shuffle也沒有騙到subtask2的分......
正解是分治,考慮咱們把這個東西劃分紅多個三角形,而後枚舉中間的一條邊,分別計算通過這條邊兩個點的詢問的代價並遞歸計算兩邊詢問的代價。
由於顯然兩個點分別在這條邊兩邊的詢問的最有路徑至少過這條邊兩個端點中的一個......
然而這種分治可能把一個求解區間變成上下兩個不連通的聯通快......因此在更新時須要特判一下-1,在遞歸邊界也要特判......
話說第一次寫這個我還寫傻了,寫了8kb代碼死活調不出來......後來重構了才成功AC。
25分暴力代碼:ui
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 #include<vector> 6 #include<queue> 7 #define debug cout 8 using namespace std; 9 const int maxn=1e5+1e2; 10 11 struct Node { 12 int y,id; 13 }; 14 struct QNode { 15 int siz,id; 16 friend bool operator < (const QNode &a,const QNode &b) { 17 return a.siz < b.siz; 18 } 19 }; 20 vector<Node> qs[maxn]; 21 priority_queue<QNode> pq; 22 queue<int> q; 23 vector<int> vec[maxn]; 24 int siz[maxn],dis[maxn],ans[maxn]; 25 int n,m; 26 27 inline void bfs(int st) { 28 memset(dis,-1,sizeof(int)*n) , dis[st] = 0; 29 q.push(st); 30 while( q.size() ) { 31 const int pos = q.front(); q.pop(); 32 for(unsigned j=0;j<vec[pos].size();j++) 33 if( !~dis[vec[pos][j]] ) 34 dis[vec[pos][j]] = dis[pos] + 1 , 35 q.push(vec[pos][j]); 36 } 37 } 38 inline void getans(const QNode &d) { 39 if( siz[d.id] != d.siz ) return; 40 const int id = d.id; bfs(id); 41 for(unsigned i=0;i<qs[id].size();i++) 42 if( !ans[qs[id][i].id] ) { 43 ans[qs[id][i].id] = dis[qs[id][i].y] , 44 pq.push((QNode){--siz[qs[id][i].y],qs[id][i].y}); 45 } 46 } 47 inline void getans() { 48 while( pq.size() ) { 49 getans(pq.top()) , pq.pop(); 50 } 51 } 52 inline void shufall() { 53 srand(19260817); 54 for(int i=0;i<n;i++) random_shuffle(vec[i].begin(),vec[i].end()); 55 } 56 57 int main() { 58 scanf("%d",&n); 59 for(int i=0;i<n;i++) { 60 vec[i].push_back(i!=n-1?i+1:0) , 61 vec[i].push_back(i?i-1:n-1); 62 } 63 for(int i=1,a,b;i<=n-3;i++) { 64 scanf("%d%d",&a,&b) , 65 vec[a].push_back(b) , 66 vec[b].push_back(a) ; 67 } 68 shufall() , scanf("%d",&m); 69 for(int i=1,a,b;i<=m;i++) { 70 scanf("%d%d",&a,&b); 71 qs[a].push_back((Node){b,i}) , 72 qs[b].push_back((Node){a,i}) ; 73 } 74 for(int i=0;i<n;i++) pq.push((QNode){siz[i]=qs[i].size(),i}); 75 getans(); 76 for(int i=1;i<=m;i++) printf("%d\n",ans[i]); 77 return 0; 78 }
正解代碼:spa
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 #include<vector> 6 #include<queue> 7 #include<cstdlib> 8 #define debug cout 9 using namespace std; 10 const int maxn=1e5+1e2; 11 const int inf=0x3f3f3f3f; 12 13 struct Query { 14 int a,b,id; 15 }; 16 int s[maxn],t[maxn<<2],nxt[maxn<<2]; 17 int disx[maxn],disy[maxn],id[maxn],pt[maxn],iid,cnt; 18 vector<Query> qs; 19 vector<int> ps; 20 int ans[maxn]; 21 22 inline void addedge(int from,int to) { 23 static int cnt = 0; 24 t[++cnt] = to , nxt[cnt] = s[from] , s[from] = cnt; 25 swap(from,to); 26 t[++cnt] = to , nxt[cnt] = s[from] , s[from] = cnt; 27 } 28 29 inline void bfs(int st,int* dis) { 30 queue<int> q; dis[st] = 0 , q.push(st); 31 while( q.size() ) { 32 const int pos = q.front(); q.pop(); 33 for(int at=s[pos];at;at=nxt[at]) 34 if( !~dis[t[at]] && id[t[at]] == id[pos] ) 35 dis[t[at]] = dis[pos] + 1 , q.push(t[at]); 36 } 37 } 38 39 inline void solve(const vector<int> &ps,const vector<Query> &qs) { 40 if( !qs.size() ) return; 41 if( ps.size() <= 3 ) { 42 ++iid; 43 for(unsigned i=0;i<ps.size();i++) disx[ps[i]] = disy[ps[i]] = -1 , id[ps[i]] = iid; 44 int x = ps[0] , y = ps[1]; 45 bfs(x,disx) , bfs(y,disy); 46 for(unsigned i=0;i<qs.size();i++) { 47 if( ~disx[qs[i].a] && ~disx[qs[i].b] ) ans[qs[i].id] = min( ans[qs[i].id] , disx[qs[i].a] + disx[qs[i].b] ); 48 if( ~disy[qs[i].a] && ~disy[qs[i].b] ) ans[qs[i].id] = min( ans[qs[i].id] , disy[qs[i].a] + disy[qs[i].b] ); 49 } 50 return; 51 } 52 ++iid , cnt = 0; 53 for(unsigned i=0;i<ps.size();i++) { 54 disx[ps[i]] = disy[ps[i]] = -1 , 55 id[ps[i]] = iid , pt[ps[i]] = ++cnt; 56 } 57 int miv = inf , x = 0 , y = 0; 58 for(unsigned i=0;i<ps.size();i++) { 59 const int pos = ps[i]; 60 for(int at=s[pos];at;at=nxt[at]) 61 if( id[t[at]] == iid ) { 62 const int lam = max( abs(pt[t[at]]-pt[pos]) , (signed) ps.size() - abs(pt[t[at]]-pt[pos]) ); 63 if( lam < miv ) miv = lam , x = pos , y = t[at]; 64 } 65 } 66 if( pt[x] > pt[y] ) swap(x,y); 67 bfs(x,disx) , bfs(y,disy); 68 vector<int> pl,pr; 69 vector<Query> ql,qr; 70 for(unsigned i=0;i<qs.size();i++) { 71 if( ~disx[qs[i].a] && ~disx[qs[i].b] ) ans[qs[i].id] = min( ans[qs[i].id] , disx[qs[i].a] + disx[qs[i].b] ); 72 if( ~disy[qs[i].a] && ~disy[qs[i].b] ) ans[qs[i].id] = min( ans[qs[i].id] , disy[qs[i].a] + disy[qs[i].b] ); 73 if( qs[i].a == x || qs[i].b == x || qs[i].a == y || qs[i].b == y ) continue; 74 if( pt[x] < pt[qs[i].a] && pt[qs[i].a] < pt[y] && pt[x] < pt[qs[i].b] && pt[qs[i].b] < pt[y] ) ql.push_back(qs[i]); 75 if( ! ( pt[x] <= pt[qs[i].a] && pt[qs[i].a] <= pt[y] ) && ! ( pt[x] <= pt[qs[i].b] && pt[qs[i].b] <= pt[y] ) ) qr.push_back(qs[i]); 76 } 77 for(unsigned i=0;i<ps.size();i++) { 78 if( ps[i] == x || ps[i] == y ) continue; 79 if( pt[x] < pt[ps[i]] && pt[ps[i]] < pt[y] ) pl.push_back(ps[i]); 80 if( ! ( pt[x] <= pt[ps[i]] && pt[ps[i]] <= pt[y] ) ) pr.push_back(ps[i]); 81 } 82 solve(pl,ql) , solve(pr,qr); 83 } 84 85 int main() { 86 static int n,m; 87 scanf("%d",&n); 88 for(int i=0;i<n;i++) { 89 addedge(i,(i+1)%n) , 90 ps.push_back(i); 91 } 92 for(int i=1,a,b;i<=n-3;i++) 93 scanf("%d%d",&a,&b) , addedge(a,b); 94 scanf("%d",&m) , memset(ans,0x3f,sizeof(ans)); 95 for(int i=1,a,b;i<=m;i++) { 96 scanf("%d%d",&a,&b) , qs.push_back((Query){a,b,i}); 97 } 98 solve(ps,qs); 99 for(int i=1;i<=m;i++) printf("%d\n",ans[i]); 100 return 0; 101 }
寫傻了的代碼:debug
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 #include<set> 6 #include<map> 7 #include<queue> 8 #include<vector> 9 #include<cassert> 10 #define debug cout 11 using namespace std; 12 const int maxn=1e5+1e2; 13 const int inf=0x3f3f3f3f; 14 15 struct Query { 16 int a,b,id; 17 }; 18 vector<pair<int,int> > es; 19 vector<Query> qs; 20 vector<int> tp,ps; 21 int ans[maxn],n,m; 22 23 namespace Graph { 24 int s[maxn],t[maxn<<2],nxt[maxn<<2],disx[maxn],disy[maxn]; 25 queue<int> q; 26 27 inline void coredge(int from,int to) { 28 static int cnt = 0; 29 t[++cnt] = to , nxt[cnt] = s[from] , s[from] = cnt; 30 } 31 inline void doubledge(int a,int b) { 32 coredge(a,b) , coredge(b,a); 33 } 34 inline void bfs(int st,int* dis) { 35 q.push(st) , dis[st] = 0; 36 while( q.size() ) { 37 const int pos = q.front(); q.pop(); 38 for(int at=s[pos];at;at=nxt[at]) if( !~dis[t[at]] ) 39 dis[t[at]] = dis[pos] + 1 , q.push(t[at]); 40 } 41 } 42 inline void solve(const vector<int> &ps,const vector<Query> &qs,int x,int y) { 43 for(unsigned i=0;i<ps.size();i++) disx[ps[i]] = disy[ps[i]] = -1; 44 bfs(x,disx) , bfs(y,disy); 45 for(unsigned i=0;i<qs.size();i++) { 46 ans[qs[i].id] = min( ans[qs[i].id] , min( disx[qs[i].a] + disy[qs[i].b] , disx[qs[i].b] + disy[qs[i].a] ) + 1 ); 47 ans[qs[i].id] = min( ans[qs[i].id] , min( disx[qs[i].a] + disx[qs[i].b] , disy[qs[i].b] + disy[qs[i].a] ) ); 48 } 49 } 50 } 51 52 namespace TreeDivideAndConqure { 53 int s[maxn],t[maxn<<1],nxt[maxn<<1],x[maxn<<1],y[maxn<<1]; 54 int id[maxn],siz[maxn],iid,miv,mip,mipfa; 55 inline void coredge(int from,int to,int xx,int yy) { 56 static int cnt = 0; 57 //debug<<"from = "<<from<<"to = "<<to<<endl; 58 t[++cnt] = to , x[cnt] = xx , y[cnt] = yy , 59 nxt[cnt] = s[from] , s[from] = cnt; 60 } 61 inline void addedge(int a,int b,int xx,int yy) { 62 int x = min( x , xx ) , y = max( y , yy ); 63 coredge(a,b,x,y) , coredge(b,a,x,y); 64 } 65 } 66 67 namespace GetTriangle { 68 struct Triangle { 69 int x,y,z; 70 Triangle() { x = y = z = -1; } 71 Triangle(int xx,int yy,int zz) { 72 static int tp[3]; 73 tp[0] = xx , tp[1] = yy , tp[2] = zz; 74 sort(tp,tp+3); 75 //debug<<"x = "<<xx<<"y = "<<yy<<"z = "<<zz<<endl; 76 x = tp[0] , y = tp[1] , z = tp[2]; 77 } 78 friend bool operator < (const Triangle &a,const Triangle &b) { 79 if( a.x != b.x ) return a.x < b.x; 80 if( a.y != b.y ) return a.y < b.y; 81 return a.z < b.z; 82 } 83 }rec[maxn]; 84 85 priority_queue<pair<unsigned,int> > pq; 86 map<Triangle,int> mp; 87 set<int> es[maxn]; 88 int deg[maxn],tcnt; 89 90 inline void getdualpoint(const int &x,int &y,int &z) { 91 y = z = -1; 92 for(set<int>::iterator it=es[x].begin();it!=es[x].end();it++) { 93 if( !~y ) y = *it; 94 else z = *it; 95 } 96 } 97 inline Triangle getbypoint(const int &x) { 98 assert(es[x].size()==2); 99 int y,z; 100 getdualpoint(x,y,z); 101 return Triangle(x,y,z); 102 } 103 inline void cutpoint(const pair<unsigned,int> &pir) { 104 const int x = pir.second; 105 if( -pir.first != es[x].size() ) return; 106 if( es[x].size() < 2 ) return; 107 //debug<<"in cutpoint x = "<<pir.second<<endl; 108 int y,z; 109 getdualpoint(x,y,z); 110 //debug<<"y = "<<y<<"z = "<<z<<endl; 111 Triangle now = Triangle(x,y,z) , nxt; 112 if( mp.find(now) == mp.end() ) mp[now] = ++tcnt , rec[tcnt] = now; 113 es[x].erase(y) , es[y].erase(x) , 114 es[x].erase(z) , es[z].erase(x) ; 115 if( es[y].size() == 2 ) nxt = getbypoint(y); 116 else if( es[z].size() == 2 ) nxt = getbypoint(z); 117 if( ~nxt.x ) { 118 if( mp.find(nxt) == mp.end() ) mp[nxt] = ++tcnt , rec[tcnt] = nxt; 119 TreeDivideAndConqure::addedge(mp[now],mp[nxt],y,z); 120 } 121 pq.push(make_pair(-es[y].size(),y)) , pq.push(make_pair(-es[z].size(),z)); 122 } 123 inline void work() { 124 for(int i=0;i<n;i++) pq.push(make_pair(-es[i].size(),i)); 125 while( pq.size() ) cutpoint(pq.top()) , pq.pop(); 126 } 127 } 128 129 namespace TreeDivideAndConqure { 130 inline void dfs(int pos,int fa,const int &fs,int &rx,int &ry) { 131 //debug<<"pos = "<<pos<<endl; 132 siz[pos] = 1; 133 for(int at=s[pos];at;at=nxt[at]) 134 if( id[t[at]] == iid && t[at] != fa ) { 135 dfs(t[at],pos,fs,rx,ry) , siz[pos] += siz[t[at]]; 136 //debug<<"max = "<<max(siz[t[at]],fs-siz[t[at]])<<endl; 137 if( max(siz[t[at]],fs-siz[t[at]]) < miv ) { 138 139 rx = x[at] , ry = y[at] , 140 miv = max(siz[t[at]],fs-siz[t[at]]) , 141 mip = t[at] , mipfa = pos; 142 } 143 } 144 } 145 inline void spit(int pos,int fa,vector<int> &ret) { 146 ret.push_back(pos); 147 for(int at=s[pos];at;at=nxt[at]) 148 if( id[t[at]] == iid && t[at] != fa ) 149 spit(t[at],pos,ret); 150 } 151 #define judge1(l,r,x) ( l < x && x < r ) 152 #define judge2(l,r,x) ( ! ( l <= x && x <= r ) ) 153 inline void solve(const vector<int> &tps,const vector<int> &ps,const vector<pair<int,int> > es,const vector<Query> qs) { 154 if( tps.size() < 1 || ps.size() <= 1 || !es.size() || !qs.size() ) return; 155 //debug<<"in solve"<<endl; 156 ++iid; 157 for(unsigned i=0;i<tps.size();i++) id[tps[i]] = iid; 158 //debug<<"tps = "; for(unsigned i=0;i<tps.size();i++) debug<<tps[i]<<" "; debug<<endl; 159 //debug<<"ps = "; for(unsigned i=0;i<ps.size();i++) debug<<ps[i]<<" "; debug<<endl; 160 int x,y; 161 miv = inf , dfs(tps[0],-1,tps.size(),x,y); 162 //debug<<"x = "<<x<<"y = "<<y<<endl; 163 Graph::solve(ps,qs,x,y); 164 vector<int> tpl,tpr; 165 spit(mip,mipfa,tpl) , spit(mipfa,mip,tpr); 166 vector<int> pl,pr; 167 vector<pair<int,int> > el,er; 168 vector<Query> ql,qr; 169 for(unsigned i=0;i<ps.size();i++) { 170 if( judge1(x,y,ps[i]) ) pl.push_back(ps[i]); 171 if( judge2(x,y,ps[i]) ) pr.push_back(ps[i]); 172 } 173 for(unsigned i=0;i<es.size();i++) { 174 if( judge1(x,y,es[i].first) && judge1(x,y,es[i].second) ) el.push_back(es[i]); 175 if( judge2(x,y,es[i].first) && judge2(x,y,es[i].second) ) er.push_back(es[i]); 176 } 177 for(unsigned i=0;i<qs.size();i++) { 178 if( judge1(x,y,qs[i].a) && judge1(x,y,qs[i].b) ) ql.push_back(qs[i]); 179 if( judge2(x,y,qs[i].a) && judge2(x,y,qs[i].b) ) qr.push_back(qs[i]); 180 } 181 if( tpl.size() && tpr.size() && GetTriangle::rec[tpl[0]].x > GetTriangle::rec[tpr[0]].x ) swap(tpl,tpr); 182 /*debug<<"tpl = "; for(unsigned i=0;i<tpl.size();i++) debug<<tpl[i]<<" "; debug<<endl; 183 debug<<"tpr = "; for(unsigned i=0;i<tpr.size();i++) debug<<tpr[i]<<" "; debug<<endl; 184 debug<<"pl = "; for(unsigned i=0;i<pl.size();i++) debug<<pl[i]<<" "; debug<<endl; 185 debug<<"pr = "; for(unsigned i=0;i<pr.size();i++) debug<<pr[i]<<" "; debug<<endl;*/ 186 solve(tpl,pl,el,ql) , solve(tpr,pr,er,qr); 187 } 188 } 189 190 inline void addedge(int x,int y) { 191 if( x > y ) swap(x,y); 192 es.push_back(make_pair(x,y)); 193 GetTriangle::es[x].insert(y) , GetTriangle::es[y].insert(x); 194 Graph::doubledge(x,y); 195 } 196 int main() { 197 static int m; 198 scanf("%d",&n); 199 for(int i=0;i<n;i++) 200 addedge(i,(i+1)%n); 201 for(int i=1,a,b;i<=n-3;i++) 202 scanf("%d%d",&a,&b) , addedge(a,b); 203 scanf("%d",&m); 204 for(int i=1,a,b;i<=m;i++) { 205 scanf("%d%d",&a,&b); 206 qs.push_back((Query){a,b,i}); 207 } 208 memset(ans,0x3f,sizeof(ans)); 209 GetTriangle::work(); 210 //for(unsigned i=1;i<=GetTriangle::tcnt;i++) debug<<GetTriangle::rec[i].x<<" "<<GetTriangle::rec[i].y<<" "<<GetTriangle::rec[i].z<<endl; 211 //exit(0); 212 for(int i=0;i<n;i++) ps.push_back(i); 213 for(int i=1;i<=GetTriangle::tcnt;i++) tp.push_back(i); 214 TreeDivideAndConqure::solve(tp,ps,es,qs); 215 for(int i=1;i<=m;i++) 216 printf("%d\n",ans[i]); 217 return 0; 218 }
T3:3d
顯然答案不能在區間不是單調不增的時候爲len,不然爲1。
n方暴力依然好寫。
只有加的狀況也很容易。
因而我考場上寫了自調整分塊trick過了40分......
可是在處理取min的時候存在問題,不能AC。
正解是線段樹,然而我並不會jry線段樹。
因而考慮亂搞,維護區間min,區間max,後面有一個更大的值的最小的umin,而後合併時討論一下就行了。
兩個標記的話讓加法優於取min,由於咱們能在min上進行加法修改。應用的時候先加法便可。
40分分塊代碼:code
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 #include<cmath> 6 #define debug cout 7 typedef long long int lli; 8 using namespace std; 9 const int maxn=1e5+1e2,maxb=319; 10 const lli inf=0x3f3f3f3f3f3f3f3fll; 11 12 int bel[maxn],st[maxb],ed[maxb]; 13 lli in[maxn],lazy_add[maxb],lazy_min[maxb],mxv[maxb],miv[maxb]; 14 bool flag[maxb]; 15 int n; 16 17 inline void block_add(int pos,int l,int r,lli t) { 18 l = max( l , st[pos] ) , r = min( r , ed[pos] ) , flag[pos] = 0; 19 for(int i=l;i<=r;i++) { 20 in[i] += t; 21 if( i != l ) flag[pos] |= ( in[i-1] < in[i] ); 22 } 23 } 24 inline void block_min(int pos,int l,int r,lli t) { 25 l = max( l , st[pos] ) , r = min( r , ed[pos] ) , flag[pos] = 0; 26 for(int i=l;i<=r;i++) { 27 in[i] = min( in[i] , t ); 28 if( i != l ) flag[pos] |= ( in[i-1] < in[i] ); 29 } 30 } 31 inline void rebuild_blk(int pos) { 32 miv[pos] = inf , mxv[pos] = 0 , flag[pos] = 0; 33 for(int i=st[pos];i<=ed[pos];i++) { 34 miv[pos] = min( miv[pos] , in[i] ) , 35 mxv[pos] = max( mxv[pos] , in[i] ) ; 36 if( i != st[pos] ) flag[pos] |= ( in[i-1] < in[i] ) ; 37 } 38 } 39 inline void push_lazy(int pos) { 40 int fail = 1; 41 if( lazy_add[pos] ) { 42 block_add(pos,st[pos],ed[pos],lazy_add[pos]); 43 lazy_add[pos] = 0 , fail = 0; 44 } 45 if( lazy_min[pos] < inf ) { 46 block_min(pos,st[pos],ed[pos],lazy_min[pos]); 47 lazy_min[pos] = inf , fail = 0; 48 } 49 if( !fail ) rebuild_blk(pos); 50 } 51 inline void fully_add(int pos,lli x) { 52 lazy_add[pos] += x , lazy_min[pos] += x , 53 miv[pos] += x , mxv[pos] += x; 54 } 55 inline void fully_min(int pos,lli x) { 56 lazy_min[pos] = min( miv[pos] , x ) , 57 miv[pos] = min( miv[pos] , x ) , 58 mxv[pos] = min( mxv[pos] , x ) ; 59 } 60 inline void partly_add(int pos,int l,int r,lli x) { 61 push_lazy(pos) , 62 block_add(pos,l,r,x) , 63 rebuild_blk(pos) ; 64 } 65 inline void partly_min(int pos,int l,int r,lli x) { 66 push_lazy(pos) , 67 block_min(pos,l,r,x) , 68 rebuild_blk(pos) ; 69 } 70 inline void update_add(int l,int r,lli x) { 71 if( bel[l] == bel[r] ) return partly_add(bel[l],l,r,x); 72 for(int i=bel[l]+1;i<bel[r];i++) fully_add(i,x); 73 partly_add(bel[l],l,r,x) , partly_add(bel[r],l,r,x); 74 } 75 inline void update_min(int l,int r,lli x) { 76 if( bel[l] == bel[r] ) return partly_min(bel[l],l,r,x); 77 for(int i=bel[l]+1;i<bel[r];i++) fully_min(i,x); 78 partly_min(bel[l],l,r,x) , partly_min(bel[r],l,r,x); 79 } 80 inline bool query_part(int pos,int l,int r,lli& miv,lli& mxv) { 81 push_lazy(pos); 82 l = max( l , st[pos] ) , r = min( r , ed[pos] ); 83 miv = inf , mxv = 0; 84 bool ret = 0; 85 for(int i=l;i<=r;i++) { 86 miv = min( miv , in[i] ) , mxv = max( mxv , in[i] ) ; 87 if( i != l ) ret |= ( in[i-1] < in[i] ); 88 } 89 return ret; 90 } 91 inline bool query(int l,int r) { 92 lli smiv,tp,x; 93 if( bel[l] == bel[r] ) return query_part(bel[l],l,r,smiv,tp); 94 bool ret = query_part(bel[l],l,r,smiv,tp); 95 for(int i=bel[l]+1;i<bel[r];i++) { 96 ret |= flag[i] , ret |= ( smiv < mxv[i] ) , smiv = min( smiv , miv[i] ); 97 if( ret ) return ret; 98 } 99 ret |= query_part(bel[r],l,r,x,tp) , ret |= ( smiv < tp ); 100 return ret; 101 } 102 103 inline void build(bool flag) { 104 const int blksiz = flag ? n : sqrt(n); 105 int cnt = 0; 106 for(int l=1,r;l<=n;l=r+1) { 107 r = min( l + blksiz - 1 , n ) , ++cnt; 108 st[cnt] = l , ed[cnt] = r , lazy_min[cnt] = inf; 109 for(int i=l;i<=r;i++) bel[i] = cnt; 110 rebuild_blk(cnt); 111 } 112 } 113 114 int main() { 115 static int m; 116 scanf("%d%d",&n,&m); 117 for(int i=1;i<=n;i++) scanf("%lld",in+i); 118 build(n<=1000); 119 for(int i=1,t,l,r,x;i<=m;i++) { 120 scanf("%d%d%d",&t,&l,&r); 121 if( t == 3 ) printf("%d\n",query(l,r)?r-l+1:1); 122 else { 123 scanf("%d",&x); 124 if( t == 1 ) update_add(l,r,x); 125 else if( t == 2 ) update_min(l,r,x); 126 } 127 } 128 return 0; 129 }
正解代碼:blog
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 #define debug cout 6 typedef long long int lli; 7 using namespace std; 8 const int maxn=1e5+1e2; 9 const lli inf=0x3f3f3f3f3f3f3f3fll,lim=inf>>4; 10 11 struct Node { 12 lli miv,mxv,umiv,umxv; 13 friend Node operator + (const Node &a,const Node &b) { 14 Node ret = (Node){min(a.miv,b.miv),max(a.mxv,b.mxv),inf,-inf}; 15 if( a.miv < b.mxv ) ret.umiv = a.miv , ret.umxv = b.mxv; 16 if( a.umiv < ret.umiv ) ret.umiv = a.umiv , ret.mxv = max( a.umxv , b.mxv ); 17 if( b.umiv < ret.umiv ) ret.umiv = b.umiv , ret.umxv = b.umxv; 18 return ret; 19 } 20 inline void fill(const int &x) { 21 miv = mxv = x , umiv = inf , umxv = -inf; 22 } 23 inline void apply_add(const lli &x) { 24 miv +=x , mxv +=x , umiv += x , umxv += x; 25 } 26 inline void apply_min(const lli &x) { 27 miv = min( miv , x ) , mxv= min( mxv , x ); 28 if( umiv < x ) umxv = max( umxv , x ); 29 else umiv = inf , umxv = -inf; 30 } 31 }ns[maxn<<3]; 32 33 int in[maxn]; 34 int l[maxn<<3],r[maxn<<3],lson[maxn<<3],rson[maxn<<3],cnt; 35 lli lazy_add[maxn<<3],lazy_min[maxn<<3]; 36 37 inline void build(int pos,int ll,int rr) { 38 l[pos] = ll , r[pos] = rr; 39 if( ll == rr ) return ns[pos].fill(in[ll]); 40 const int mid = ( ll + rr ) >> 1; 41 build(lson[pos]=++cnt,ll,mid) , build(rson[pos]=++cnt,mid+1,rr); 42 ns[pos] = ns[lson[pos]] + ns[rson[pos]]; 43 } 44 inline void apply_add(int pos,const lli &x) { 45 lazy_add[pos] += x , lazy_min[pos] += x , 46 ns[pos].apply_add(x); 47 } 48 inline void apply_min(int pos,const lli &x) { 49 lazy_min[pos] = min( lazy_min[pos] , x ) , 50 ns[pos].apply_min(x); 51 } 52 inline void push(int pos) { 53 if( lazy_add[pos] ) { 54 apply_add(lson[pos],lazy_add[pos]) , apply_add(rson[pos],lazy_add[pos]) , 55 lazy_add[pos] = 0; 56 } 57 if( lazy_min[pos] < lim ) { 58 apply_min(lson[pos],lazy_min[pos]) , apply_min(rson[pos],lazy_min[pos]) , 59 lazy_min[pos] = inf; 60 } 61 } 62 inline void update_add(int pos,int ll,int rr,const lli &x) { 63 if( rr < l[pos] || r[pos] < ll ) return; 64 if( ll <= l[pos] && r[pos] <= rr ) return apply_add(pos,x); 65 push(pos); 66 update_add(lson[pos],ll,rr,x) , update_add(rson[pos],ll,rr,x) , 67 ns[pos] = ns[lson[pos]] + ns[rson[pos]] ; 68 } 69 inline void update_min(int pos,int ll,int rr,const lli &x) { 70 if( rr < l[pos] || r[pos] < ll ) return; 71 if( ll <= l[pos] && r[pos] <= rr ) return apply_min(pos,x); 72 push(pos); 73 update_min(lson[pos],ll,rr,x) , update_min(rson[pos],ll,rr,x) , 74 ns[pos] = ns[lson[pos]] + ns[rson[pos]]; 75 } 76 inline Node query(int pos,int ll,int rr) { 77 if( ll <= l[pos] && r[pos] <= rr ) return ns[pos]; 78 push(pos); 79 const int mid = ( l[pos] + r[pos] ) >> 1; 80 if( rr <= mid ) return query(lson[pos],ll,rr); 81 if( ll > mid ) return query(rson[pos],ll,rr); 82 const Node ql = query(lson[pos],ll,rr) , qr = query(rson[pos],ll,rr); 83 return ql + qr; 84 } 85 86 int main() { 87 static int n,m; 88 scanf("%d%d",&n,&m) , memset(lazy_min,0x3f,sizeof(lazy_min)); 89 for(int i=1;i<=n;i++) scanf("%d",in+i); 90 build(cnt=1,1,n); 91 for(int i=1,o,l,r,x;i<=m;i++) { 92 scanf("%d%d%d",&o,&l,&r); 93 if( o == 3 ) { 94 Node ans = query(1,l,r); 95 printf("%d\n",ans.umiv<lim?r-l+1:1); 96 } else { 97 scanf("%d",&x); 98 if( o == 1 ) update_add(1,l,r,x); 99 else if( o ==2 ) update_min(1,l,r,x); 100 } 101 } 102 return 0; 103 }