北京集訓:20180325

你說我怎麼這麼菜呢?

T1:ios


考場上沒看到下取整,同時把那個sigma當作了次數,覺得要在mod phi(p)下算,這玩意能作?
而後果斷爆零......
其實puts(2的逆元)+puts("1")有25分......
正解看官方題解吧。app


那個鬼畜的容斥大概就是在n+1個斷點中欽定k個斷點,數字相對於剩下的m+1-k個集合的位置無關,因此對於這m+1-k個集合能夠隨意放置。
代碼:dom

 1 #include<cstdio>
 2 #include<algorithm>
 3 typedef long long int lli;
 4 const int maxn=1e5+1e2,maxl=262145;
 5 const int mod=998244353,g=3;
 6 
 7 lli fac[maxn],inv[maxn];
 8 lli lft[maxl],rit[maxl],tar[maxl];
 9 lli ans;
10 int n,m;
11 
12 inline lli fastpow(lli base,int tim) {
13     lli ret = 1;
14     while( tim ) {
15         if( tim & 1 ) ret = ret * base % mod;
16         if( tim >>= 1 ) base = base * base % mod;
17     }
18     return ret;
19 }
20 inline void NTT(lli* dst,int n,int ope=1) {
21     for(int i=0,j=0;i<n;i++) {
22         if( i < j ) std::swap(dst[i],dst[j]);
23         for(int t=n>>1;(j^=t)<t;t>>=1);
24     }
25     for(int len=2;len<=n;len<<=1) {
26         const int h = len >> 1;
27         lli per = fastpow(g,mod/len);
28         if( !~ope ) per = fastpow(per,mod-2);
29         for(int st=0;st<n;st+=len) {
30             lli w = 1;
31             for(int pos=0;pos<h;pos++) {
32                 const lli u = dst[st+pos] , v = dst[st+pos+h] * w % mod;
33                 dst[st+pos] = ( u + v ) % mod ,
34                 dst[st+pos+h] = ( u - v + mod ) % mod ,
35                 w = w * per % mod;
36             }
37         }
38     }
39     if( !~ope ) {
40         const lli inv = fastpow(n,mod-2);
41         for(int i=0;i<n;i++) dst[i] = dst[i] * inv % mod;
42     }
43 }
44 
45 inline lli c(int n,int m) {
46     return fac[n] * inv[m] % mod * inv[n-m] % mod;
47 }
48 inline void init() {
49     for(int i=0;i<=n+1;i++) {
50         lft[i] = ( i & 1 ) ? mod - c(n+1,i) : c(n+1,i);
51         rit[i] = fastpow(i,n);
52     }
53 }
54 inline void getans() {
55     init(); int len = 1;
56     while( len <= ( n << 1 ) + 1 ) len <<= 1;
57     NTT(lft,len) , NTT(rit,len);
58     for(int i=0;i<len;i++) tar[i] = lft[i] * rit[i] % mod;
59     NTT(tar,len,-1);
60     for(int i=0;i<=n;i++) ans = ( ans + tar[i+1] * fastpow(i,m) % mod ) % mod;
61     ans = ans * inv[n] % mod;
62 }
63 inline void pre() {
64     int lim = n + 1;
65     *fac = 1;
66     for(int i=1;i<=lim;i++) fac[i] = fac[i-1] * i % mod;
67     inv[lim] = fastpow(fac[lim],mod-2);
68     for(int i=lim;i;i--) inv[i-1] = inv[i] * i % mod;
69 }
70 
71 int main() {
72     scanf("%d%d",&n,&m);
73     pre() , getans();
74     printf("%lld\n",ans);
75     return 0;
76 }
View Code


T2:ide


n方暴力很好寫吧......
考慮二維平面,一條路徑至關於讓兩邊花式取min,而後不會寫了。
寫了一個大力random_shuffle也沒有騙到subtask2的分......
正解是分治,考慮咱們把這個東西劃分紅多個三角形,而後枚舉中間的一條邊,分別計算通過這條邊兩個點的詢問的代價並遞歸計算兩邊詢問的代價。
由於顯然兩個點分別在這條邊兩邊的詢問的最有路徑至少過這條邊兩個端點中的一個......
然而這種分治可能把一個求解區間變成上下兩個不連通的聯通快......因此在更新時須要特判一下-1,在遞歸邊界也要特判......
話說第一次寫這個我還寫傻了,寫了8kb代碼死活調不出來......後來重構了才成功AC。
25分暴力代碼:ui

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<vector>
 6 #include<queue>
 7 #define debug cout
 8 using namespace std;
 9 const int maxn=1e5+1e2;
10 
11 struct Node {
12     int y,id;
13 };
14 struct QNode {
15     int siz,id;
16     friend bool operator < (const QNode &a,const QNode &b) {
17         return a.siz < b.siz;
18     }
19 };
20 vector<Node> qs[maxn];
21 priority_queue<QNode> pq;
22 queue<int> q;
23 vector<int> vec[maxn];
24 int siz[maxn],dis[maxn],ans[maxn];
25 int n,m;
26 
27 inline void bfs(int st) {
28     memset(dis,-1,sizeof(int)*n) , dis[st] = 0;
29     q.push(st);
30     while( q.size() ) {
31         const int pos = q.front(); q.pop();
32         for(unsigned j=0;j<vec[pos].size();j++)
33             if( !~dis[vec[pos][j]] )
34                 dis[vec[pos][j]] = dis[pos] + 1 ,
35                 q.push(vec[pos][j]);
36     }
37 }
38 inline void getans(const QNode &d) {
39     if( siz[d.id] != d.siz ) return;
40     const int id = d.id; bfs(id);
41     for(unsigned i=0;i<qs[id].size();i++)
42         if( !ans[qs[id][i].id] ) {
43             ans[qs[id][i].id] = dis[qs[id][i].y] ,
44             pq.push((QNode){--siz[qs[id][i].y],qs[id][i].y});
45         }
46 }
47 inline void getans() {
48     while( pq.size() ) {
49         getans(pq.top()) , pq.pop();
50     }
51 }
52 inline void shufall() {
53     srand(19260817);
54     for(int i=0;i<n;i++) random_shuffle(vec[i].begin(),vec[i].end());
55 }
56 
57 int main() {
58     scanf("%d",&n);
59     for(int i=0;i<n;i++) {
60         vec[i].push_back(i!=n-1?i+1:0) ,
61         vec[i].push_back(i?i-1:n-1);
62     }
63     for(int i=1,a,b;i<=n-3;i++) {
64         scanf("%d%d",&a,&b) ,
65         vec[a].push_back(b) ,
66         vec[b].push_back(a) ;
67     }
68     shufall() , scanf("%d",&m);
69     for(int i=1,a,b;i<=m;i++) {
70         scanf("%d%d",&a,&b);
71         qs[a].push_back((Node){b,i}) ,
72         qs[b].push_back((Node){a,i}) ;
73     }
74     for(int i=0;i<n;i++) pq.push((QNode){siz[i]=qs[i].size(),i});
75     getans();
76     for(int i=1;i<=m;i++) printf("%d\n",ans[i]);
77     return 0;
78 }
View Code

正解代碼:spa

  1 #include<iostream>
  2 #include<cstdio>
  3 #include<cstring>
  4 #include<algorithm>
  5 #include<vector>
  6 #include<queue>
  7 #include<cstdlib>
  8 #define debug cout
  9 using namespace std;
 10 const int maxn=1e5+1e2;
 11 const int inf=0x3f3f3f3f;
 12 
 13 struct Query {
 14     int a,b,id;
 15 };
 16 int s[maxn],t[maxn<<2],nxt[maxn<<2];
 17 int disx[maxn],disy[maxn],id[maxn],pt[maxn],iid,cnt;
 18 vector<Query> qs;
 19 vector<int> ps;
 20 int ans[maxn];
 21 
 22 inline void addedge(int from,int to) {
 23     static int cnt = 0;
 24     t[++cnt] = to , nxt[cnt] = s[from] , s[from] = cnt;
 25     swap(from,to);
 26     t[++cnt] = to , nxt[cnt] = s[from] , s[from] = cnt;
 27 }
 28 
 29 inline void bfs(int st,int* dis) {
 30     queue<int> q; dis[st] = 0 , q.push(st);
 31     while( q.size() ) {
 32         const int pos = q.front(); q.pop();
 33         for(int at=s[pos];at;at=nxt[at])
 34             if( !~dis[t[at]] && id[t[at]] == id[pos] )
 35                 dis[t[at]] = dis[pos] + 1 , q.push(t[at]);
 36     }
 37 }
 38 
 39 inline void solve(const vector<int> &ps,const vector<Query> &qs) {
 40     if( !qs.size() ) return;
 41     if( ps.size() <= 3 ) {
 42         ++iid;
 43         for(unsigned i=0;i<ps.size();i++) disx[ps[i]] = disy[ps[i]] = -1 , id[ps[i]] = iid;
 44         int x = ps[0] , y = ps[1];
 45         bfs(x,disx) , bfs(y,disy);
 46         for(unsigned i=0;i<qs.size();i++) {
 47             if( ~disx[qs[i].a] && ~disx[qs[i].b] ) ans[qs[i].id] = min( ans[qs[i].id] , disx[qs[i].a] + disx[qs[i].b] );
 48             if( ~disy[qs[i].a] && ~disy[qs[i].b] ) ans[qs[i].id] = min( ans[qs[i].id] , disy[qs[i].a] + disy[qs[i].b] );
 49         }
 50         return;
 51     }
 52     ++iid , cnt = 0;
 53     for(unsigned i=0;i<ps.size();i++) {
 54         disx[ps[i]] = disy[ps[i]] = -1 ,
 55         id[ps[i]] = iid , pt[ps[i]] = ++cnt;
 56     }
 57     int miv = inf , x = 0 , y = 0;
 58     for(unsigned i=0;i<ps.size();i++) {
 59         const int pos = ps[i];
 60         for(int at=s[pos];at;at=nxt[at])
 61             if( id[t[at]] == iid ) {
 62                 const int lam = max( abs(pt[t[at]]-pt[pos]) , (signed) ps.size() - abs(pt[t[at]]-pt[pos]) );
 63                 if( lam < miv ) miv = lam , x = pos , y = t[at];
 64             }
 65     }
 66     if( pt[x] > pt[y] ) swap(x,y);
 67     bfs(x,disx) , bfs(y,disy);
 68     vector<int> pl,pr;
 69     vector<Query> ql,qr;
 70     for(unsigned i=0;i<qs.size();i++) {
 71         if( ~disx[qs[i].a] && ~disx[qs[i].b] ) ans[qs[i].id] = min( ans[qs[i].id] , disx[qs[i].a] + disx[qs[i].b] );
 72         if( ~disy[qs[i].a] && ~disy[qs[i].b] ) ans[qs[i].id] = min( ans[qs[i].id] , disy[qs[i].a] + disy[qs[i].b] );
 73         if( qs[i].a == x || qs[i].b == x || qs[i].a == y || qs[i].b == y ) continue;
 74         if( pt[x] < pt[qs[i].a] && pt[qs[i].a] < pt[y] && pt[x] < pt[qs[i].b] && pt[qs[i].b] < pt[y] ) ql.push_back(qs[i]);
 75         if( ! ( pt[x] <= pt[qs[i].a] && pt[qs[i].a] <= pt[y] ) && ! ( pt[x] <= pt[qs[i].b] && pt[qs[i].b] <= pt[y] ) ) qr.push_back(qs[i]);
 76     }
 77     for(unsigned i=0;i<ps.size();i++) {
 78         if( ps[i] == x || ps[i] == y ) continue;
 79         if( pt[x] < pt[ps[i]] && pt[ps[i]] < pt[y] ) pl.push_back(ps[i]);
 80         if( ! ( pt[x] <= pt[ps[i]] && pt[ps[i]] <= pt[y] ) ) pr.push_back(ps[i]);
 81     }
 82     solve(pl,ql) , solve(pr,qr);
 83 }
 84 
 85 int main() {
 86     static int n,m;
 87     scanf("%d",&n);
 88     for(int i=0;i<n;i++) {
 89         addedge(i,(i+1)%n) ,
 90         ps.push_back(i);
 91     }
 92     for(int i=1,a,b;i<=n-3;i++)
 93         scanf("%d%d",&a,&b) , addedge(a,b);
 94     scanf("%d",&m) , memset(ans,0x3f,sizeof(ans));
 95     for(int i=1,a,b;i<=m;i++) {
 96         scanf("%d%d",&a,&b) , qs.push_back((Query){a,b,i});
 97     }
 98     solve(ps,qs);
 99     for(int i=1;i<=m;i++) printf("%d\n",ans[i]);
100     return 0;
101 }
View Code

寫傻了的代碼:debug

  1 #include<iostream>
  2 #include<cstdio>
  3 #include<cstring>
  4 #include<algorithm>
  5 #include<set>
  6 #include<map>
  7 #include<queue>
  8 #include<vector>
  9 #include<cassert>
 10 #define debug cout
 11 using namespace std;
 12 const int maxn=1e5+1e2;
 13 const int inf=0x3f3f3f3f;
 14 
 15 struct Query {
 16     int a,b,id;
 17 };
 18 vector<pair<int,int> > es;
 19 vector<Query> qs;
 20 vector<int> tp,ps;
 21 int ans[maxn],n,m;
 22 
 23 namespace Graph {
 24     int s[maxn],t[maxn<<2],nxt[maxn<<2],disx[maxn],disy[maxn];
 25     queue<int> q;
 26     
 27     inline void coredge(int from,int to) {
 28         static int cnt = 0;
 29         t[++cnt] = to , nxt[cnt] = s[from] , s[from] = cnt;
 30     }
 31     inline void doubledge(int a,int b) {
 32         coredge(a,b) , coredge(b,a);
 33     }
 34     inline void bfs(int st,int* dis) {
 35         q.push(st) , dis[st] = 0;
 36         while( q.size() ) {
 37             const int pos = q.front(); q.pop();
 38             for(int at=s[pos];at;at=nxt[at]) if( !~dis[t[at]] )
 39                 dis[t[at]] = dis[pos] + 1 , q.push(t[at]);
 40         }
 41     }
 42     inline void solve(const vector<int> &ps,const vector<Query> &qs,int x,int y) {
 43         for(unsigned i=0;i<ps.size();i++) disx[ps[i]] = disy[ps[i]] = -1;
 44         bfs(x,disx) , bfs(y,disy);
 45         for(unsigned i=0;i<qs.size();i++) {
 46             ans[qs[i].id] = min( ans[qs[i].id] , min( disx[qs[i].a] + disy[qs[i].b] , disx[qs[i].b] + disy[qs[i].a] ) + 1 );
 47             ans[qs[i].id] = min( ans[qs[i].id] , min( disx[qs[i].a] + disx[qs[i].b] , disy[qs[i].b] + disy[qs[i].a] ) );
 48         }
 49     }
 50 }
 51 
 52 namespace TreeDivideAndConqure {
 53     int s[maxn],t[maxn<<1],nxt[maxn<<1],x[maxn<<1],y[maxn<<1];
 54     int id[maxn],siz[maxn],iid,miv,mip,mipfa;
 55     inline void coredge(int from,int to,int xx,int yy) {
 56         static int cnt = 0;
 57         //debug<<"from = "<<from<<"to = "<<to<<endl;
 58         t[++cnt] = to , x[cnt] = xx , y[cnt] = yy ,
 59         nxt[cnt] = s[from] , s[from] = cnt;
 60     }
 61     inline void addedge(int a,int b,int xx,int yy) {
 62         int x = min( x , xx ) , y = max( y , yy );
 63         coredge(a,b,x,y) , coredge(b,a,x,y);
 64     }
 65 }
 66 
 67 namespace GetTriangle {
 68     struct Triangle {
 69         int x,y,z;
 70         Triangle() { x = y = z = -1; }
 71         Triangle(int xx,int yy,int zz) {
 72             static int tp[3];
 73             tp[0] = xx , tp[1] = yy , tp[2] = zz;
 74             sort(tp,tp+3);
 75             //debug<<"x = "<<xx<<"y = "<<yy<<"z = "<<zz<<endl;
 76             x = tp[0] , y = tp[1] , z = tp[2];
 77         }
 78         friend bool operator < (const Triangle &a,const Triangle &b) {
 79             if( a.x != b.x ) return a.x < b.x;
 80             if( a.y != b.y ) return a.y < b.y;
 81             return a.z < b.z;
 82         }
 83     }rec[maxn];
 84     
 85     priority_queue<pair<unsigned,int> > pq;
 86     map<Triangle,int> mp;
 87     set<int> es[maxn];
 88     int deg[maxn],tcnt;
 89     
 90     inline void getdualpoint(const int &x,int &y,int &z) {
 91         y = z = -1;
 92         for(set<int>::iterator it=es[x].begin();it!=es[x].end();it++) {
 93             if( !~y ) y = *it;
 94             else z = *it;
 95         }
 96     }
 97     inline Triangle getbypoint(const int &x) {
 98         assert(es[x].size()==2);
 99         int y,z;
100         getdualpoint(x,y,z);
101         return Triangle(x,y,z);
102     }
103     inline void cutpoint(const pair<unsigned,int> &pir) {
104         const int x = pir.second;
105         if( -pir.first != es[x].size() ) return;
106         if( es[x].size() < 2 ) return;
107         //debug<<"in cutpoint x = "<<pir.second<<endl;
108         int y,z;
109         getdualpoint(x,y,z);
110         //debug<<"y = "<<y<<"z = "<<z<<endl;
111         Triangle now = Triangle(x,y,z) , nxt;
112         if( mp.find(now) == mp.end() ) mp[now] = ++tcnt , rec[tcnt] = now;
113         es[x].erase(y) , es[y].erase(x) ,
114         es[x].erase(z) , es[z].erase(x) ;
115         if( es[y].size() == 2 ) nxt = getbypoint(y);
116         else if( es[z].size() == 2 ) nxt = getbypoint(z);
117         if( ~nxt.x ) {
118             if( mp.find(nxt) == mp.end() ) mp[nxt] = ++tcnt , rec[tcnt] = nxt;
119             TreeDivideAndConqure::addedge(mp[now],mp[nxt],y,z);
120         }
121         pq.push(make_pair(-es[y].size(),y)) , pq.push(make_pair(-es[z].size(),z));
122     }
123     inline void work() {
124         for(int i=0;i<n;i++) pq.push(make_pair(-es[i].size(),i));
125         while( pq.size() ) cutpoint(pq.top()) , pq.pop();
126     }
127 }
128 
129 namespace TreeDivideAndConqure {
130     inline void dfs(int pos,int fa,const int &fs,int &rx,int &ry) {
131         //debug<<"pos = "<<pos<<endl;
132         siz[pos] = 1;
133         for(int at=s[pos];at;at=nxt[at])
134             if( id[t[at]] == iid && t[at] != fa ) {
135                 dfs(t[at],pos,fs,rx,ry) , siz[pos] += siz[t[at]];
136                 //debug<<"max = "<<max(siz[t[at]],fs-siz[t[at]])<<endl;
137                 if( max(siz[t[at]],fs-siz[t[at]]) < miv ) {
138                     
139                     rx = x[at] , ry = y[at] ,
140                     miv = max(siz[t[at]],fs-siz[t[at]]) ,
141                     mip = t[at] , mipfa = pos;
142                 }
143             }
144     }
145     inline void spit(int pos,int fa,vector<int> &ret) {
146         ret.push_back(pos);
147         for(int at=s[pos];at;at=nxt[at])
148             if( id[t[at]] == iid && t[at] != fa )
149                 spit(t[at],pos,ret);
150     }
151     #define judge1(l,r,x) ( l < x && x < r )
152     #define judge2(l,r,x) ( ! ( l <= x && x <= r ) )
153     inline void solve(const vector<int> &tps,const vector<int> &ps,const vector<pair<int,int> > es,const vector<Query> qs) {
154         if( tps.size() < 1 || ps.size() <= 1 || !es.size() || !qs.size() ) return;
155         //debug<<"in solve"<<endl;
156         ++iid;
157         for(unsigned i=0;i<tps.size();i++) id[tps[i]] = iid;
158         //debug<<"tps = "; for(unsigned i=0;i<tps.size();i++) debug<<tps[i]<<" "; debug<<endl;
159         //debug<<"ps = "; for(unsigned i=0;i<ps.size();i++) debug<<ps[i]<<" "; debug<<endl;
160         int x,y;
161         miv = inf , dfs(tps[0],-1,tps.size(),x,y);
162         //debug<<"x = "<<x<<"y = "<<y<<endl;
163         Graph::solve(ps,qs,x,y);
164         vector<int> tpl,tpr;
165         spit(mip,mipfa,tpl) , spit(mipfa,mip,tpr);
166         vector<int> pl,pr;
167         vector<pair<int,int> > el,er;
168         vector<Query> ql,qr;
169         for(unsigned i=0;i<ps.size();i++) {
170             if( judge1(x,y,ps[i]) ) pl.push_back(ps[i]);
171             if( judge2(x,y,ps[i]) ) pr.push_back(ps[i]);
172         }
173         for(unsigned i=0;i<es.size();i++) {
174             if( judge1(x,y,es[i].first) && judge1(x,y,es[i].second) ) el.push_back(es[i]);
175             if( judge2(x,y,es[i].first) && judge2(x,y,es[i].second) ) er.push_back(es[i]);
176         }
177         for(unsigned i=0;i<qs.size();i++) {
178             if( judge1(x,y,qs[i].a) && judge1(x,y,qs[i].b) ) ql.push_back(qs[i]);
179             if( judge2(x,y,qs[i].a) && judge2(x,y,qs[i].b) ) qr.push_back(qs[i]);
180         }
181         if( tpl.size() && tpr.size() && GetTriangle::rec[tpl[0]].x > GetTriangle::rec[tpr[0]].x ) swap(tpl,tpr);
182         /*debug<<"tpl = "; for(unsigned i=0;i<tpl.size();i++) debug<<tpl[i]<<" "; debug<<endl;
183         debug<<"tpr = "; for(unsigned i=0;i<tpr.size();i++) debug<<tpr[i]<<" "; debug<<endl;
184         debug<<"pl = "; for(unsigned i=0;i<pl.size();i++) debug<<pl[i]<<" "; debug<<endl;
185         debug<<"pr = "; for(unsigned i=0;i<pr.size();i++) debug<<pr[i]<<" "; debug<<endl;*/
186         solve(tpl,pl,el,ql) , solve(tpr,pr,er,qr);
187     }
188 }
189 
190 inline void addedge(int x,int y) {
191     if( x > y ) swap(x,y);
192     es.push_back(make_pair(x,y));
193     GetTriangle::es[x].insert(y) , GetTriangle::es[y].insert(x);
194     Graph::doubledge(x,y);
195 }
196 int main() {
197     static int m;
198     scanf("%d",&n);
199     for(int i=0;i<n;i++)
200         addedge(i,(i+1)%n);
201     for(int i=1,a,b;i<=n-3;i++)
202         scanf("%d%d",&a,&b) , addedge(a,b);
203     scanf("%d",&m);
204     for(int i=1,a,b;i<=m;i++) {
205         scanf("%d%d",&a,&b);
206         qs.push_back((Query){a,b,i});
207     }
208     memset(ans,0x3f,sizeof(ans));
209     GetTriangle::work();
210     //for(unsigned i=1;i<=GetTriangle::tcnt;i++) debug<<GetTriangle::rec[i].x<<" "<<GetTriangle::rec[i].y<<" "<<GetTriangle::rec[i].z<<endl;
211     //exit(0);
212     for(int i=0;i<n;i++) ps.push_back(i);
213     for(int i=1;i<=GetTriangle::tcnt;i++) tp.push_back(i);
214     TreeDivideAndConqure::solve(tp,ps,es,qs);
215     for(int i=1;i<=m;i++)
216         printf("%d\n",ans[i]);
217     return 0;
218 }
View Code


T3:3d


顯然答案不能在區間不是單調不增的時候爲len,不然爲1。
n方暴力依然好寫。
只有加的狀況也很容易。
因而我考場上寫了自調整分塊trick過了40分......
可是在處理取min的時候存在問題,不能AC。
正解是線段樹,然而我並不會jry線段樹。
因而考慮亂搞,維護區間min,區間max,後面有一個更大的值的最小的umin,而後合併時討論一下就行了。
兩個標記的話讓加法優於取min,由於咱們能在min上進行加法修改。應用的時候先加法便可。
40分分塊代碼:code

  1 #include<iostream>
  2 #include<cstdio>
  3 #include<cstring>
  4 #include<algorithm>
  5 #include<cmath>
  6 #define debug cout
  7 typedef long long int lli;
  8 using namespace std;
  9 const int maxn=1e5+1e2,maxb=319;
 10 const lli inf=0x3f3f3f3f3f3f3f3fll;
 11 
 12 int bel[maxn],st[maxb],ed[maxb];
 13 lli in[maxn],lazy_add[maxb],lazy_min[maxb],mxv[maxb],miv[maxb];
 14 bool flag[maxb];
 15 int n;
 16 
 17 inline void block_add(int pos,int l,int r,lli t) {
 18     l = max( l , st[pos] ) , r = min( r , ed[pos] ) , flag[pos] = 0;
 19     for(int i=l;i<=r;i++) {
 20         in[i] += t;
 21         if( i != l ) flag[pos] |= ( in[i-1] < in[i] );
 22     }
 23 }
 24 inline void block_min(int pos,int l,int r,lli t) {
 25     l = max( l , st[pos] ) , r = min( r , ed[pos] ) , flag[pos] = 0;
 26     for(int i=l;i<=r;i++) {
 27         in[i] = min( in[i] , t );
 28         if( i != l ) flag[pos] |= ( in[i-1] < in[i] );
 29     }
 30 }
 31 inline void rebuild_blk(int pos) {
 32     miv[pos] = inf , mxv[pos] = 0 , flag[pos] = 0;
 33     for(int i=st[pos];i<=ed[pos];i++) {
 34         miv[pos] = min( miv[pos] , in[i] ) ,
 35         mxv[pos] = max( mxv[pos] , in[i] ) ;
 36         if( i != st[pos] ) flag[pos] |= ( in[i-1] < in[i] ) ;
 37     }
 38 }
 39 inline void push_lazy(int pos) {
 40     int fail = 1;
 41     if( lazy_add[pos] ) {
 42         block_add(pos,st[pos],ed[pos],lazy_add[pos]);
 43         lazy_add[pos] = 0 , fail = 0;
 44     }
 45     if( lazy_min[pos] < inf ) {
 46         block_min(pos,st[pos],ed[pos],lazy_min[pos]);
 47         lazy_min[pos] = inf , fail = 0;
 48     }
 49     if( !fail ) rebuild_blk(pos);
 50 }
 51 inline void fully_add(int pos,lli x) {
 52     lazy_add[pos] += x , lazy_min[pos] += x ,
 53     miv[pos] += x , mxv[pos] += x;
 54 }
 55 inline void fully_min(int pos,lli x) {
 56     lazy_min[pos] = min( miv[pos] , x ) ,
 57     miv[pos] = min( miv[pos] , x ) ,
 58     mxv[pos] = min( mxv[pos] , x ) ;
 59 }
 60 inline void partly_add(int pos,int l,int r,lli x) {
 61     push_lazy(pos) ,
 62     block_add(pos,l,r,x) ,
 63     rebuild_blk(pos) ;
 64 }
 65 inline void partly_min(int pos,int l,int r,lli x) {
 66     push_lazy(pos) ,
 67     block_min(pos,l,r,x) ,
 68     rebuild_blk(pos) ;
 69 }
 70 inline void update_add(int l,int r,lli x) {
 71     if( bel[l] == bel[r] ) return partly_add(bel[l],l,r,x);
 72     for(int i=bel[l]+1;i<bel[r];i++) fully_add(i,x);
 73     partly_add(bel[l],l,r,x) , partly_add(bel[r],l,r,x);
 74 }
 75 inline void update_min(int l,int r,lli x) {
 76     if( bel[l] == bel[r] ) return partly_min(bel[l],l,r,x);
 77     for(int i=bel[l]+1;i<bel[r];i++) fully_min(i,x);
 78     partly_min(bel[l],l,r,x) , partly_min(bel[r],l,r,x);
 79 }
 80 inline bool query_part(int pos,int l,int r,lli& miv,lli& mxv) {
 81     push_lazy(pos);
 82     l = max( l , st[pos] ) , r = min( r , ed[pos] );
 83     miv = inf , mxv = 0;
 84     bool ret = 0;
 85     for(int i=l;i<=r;i++) {
 86         miv = min( miv , in[i] ) , mxv = max( mxv , in[i] ) ;
 87         if( i != l ) ret |= ( in[i-1] < in[i] );
 88     }
 89     return ret;
 90 }
 91 inline bool query(int l,int r) {
 92     lli smiv,tp,x;
 93     if( bel[l] == bel[r] ) return query_part(bel[l],l,r,smiv,tp);
 94     bool ret = query_part(bel[l],l,r,smiv,tp);
 95     for(int i=bel[l]+1;i<bel[r];i++) {
 96         ret |= flag[i] , ret |= ( smiv < mxv[i] ) , smiv = min( smiv , miv[i] );
 97         if( ret ) return ret;
 98     }
 99     ret |= query_part(bel[r],l,r,x,tp) , ret |= ( smiv < tp );
100     return ret;
101 }
102 
103 inline void build(bool flag) {
104     const int blksiz = flag ? n : sqrt(n);
105     int cnt = 0;
106     for(int l=1,r;l<=n;l=r+1) {
107         r = min( l + blksiz - 1 , n ) , ++cnt;
108         st[cnt] = l , ed[cnt] = r , lazy_min[cnt] = inf;
109         for(int i=l;i<=r;i++) bel[i] = cnt;
110         rebuild_blk(cnt);
111     }
112 }
113 
114 int main() {
115     static int m;
116     scanf("%d%d",&n,&m);
117     for(int i=1;i<=n;i++) scanf("%lld",in+i);
118     build(n<=1000);
119     for(int i=1,t,l,r,x;i<=m;i++) {
120         scanf("%d%d%d",&t,&l,&r);
121         if( t == 3 ) printf("%d\n",query(l,r)?r-l+1:1);
122         else {
123             scanf("%d",&x);
124             if( t == 1 ) update_add(l,r,x);
125             else if( t == 2 ) update_min(l,r,x);
126         }
127     }
128     return 0;
129 }
View Code

正解代碼:blog

  1 #include<iostream>
  2 #include<cstdio>
  3 #include<cstring>
  4 #include<algorithm>
  5 #define debug cout
  6 typedef long long int lli;
  7 using namespace std;
  8 const int maxn=1e5+1e2;
  9 const lli inf=0x3f3f3f3f3f3f3f3fll,lim=inf>>4;
 10 
 11 struct Node {
 12     lli miv,mxv,umiv,umxv;
 13     friend Node operator + (const Node &a,const Node &b) {
 14          Node ret = (Node){min(a.miv,b.miv),max(a.mxv,b.mxv),inf,-inf};
 15          if( a.miv < b.mxv ) ret.umiv = a.miv , ret.umxv = b.mxv;
 16          if( a.umiv < ret.umiv ) ret.umiv = a.umiv , ret.mxv = max( a.umxv , b.mxv );
 17          if( b.umiv < ret.umiv ) ret.umiv = b.umiv , ret.umxv = b.umxv;
 18          return ret;
 19     }
 20     inline void fill(const int &x) {
 21         miv = mxv = x , umiv = inf , umxv = -inf;
 22     }
 23     inline void apply_add(const lli &x) {
 24         miv +=x , mxv +=x , umiv += x , umxv += x;
 25     }
 26     inline void apply_min(const lli &x) {
 27         miv = min( miv , x ) , mxv= min( mxv , x );
 28         if( umiv < x ) umxv = max( umxv , x );
 29         else umiv = inf , umxv = -inf;
 30     }
 31 }ns[maxn<<3];
 32 
 33 int in[maxn];
 34 int l[maxn<<3],r[maxn<<3],lson[maxn<<3],rson[maxn<<3],cnt;
 35 lli lazy_add[maxn<<3],lazy_min[maxn<<3];
 36 
 37 inline void build(int pos,int ll,int rr) {
 38     l[pos] = ll , r[pos] = rr;
 39     if( ll == rr ) return ns[pos].fill(in[ll]);
 40     const int mid = ( ll + rr ) >> 1;
 41     build(lson[pos]=++cnt,ll,mid) , build(rson[pos]=++cnt,mid+1,rr);
 42     ns[pos] = ns[lson[pos]] + ns[rson[pos]];
 43 }
 44 inline void apply_add(int pos,const lli &x) {
 45     lazy_add[pos] += x , lazy_min[pos] += x ,
 46     ns[pos].apply_add(x);
 47 }
 48 inline void apply_min(int pos,const lli &x) {
 49     lazy_min[pos] = min( lazy_min[pos] , x ) ,
 50     ns[pos].apply_min(x);
 51 }
 52 inline void push(int pos) {
 53     if( lazy_add[pos] ) {
 54         apply_add(lson[pos],lazy_add[pos]) , apply_add(rson[pos],lazy_add[pos]) ,
 55         lazy_add[pos] = 0;
 56     }
 57     if( lazy_min[pos] < lim ) {
 58         apply_min(lson[pos],lazy_min[pos]) , apply_min(rson[pos],lazy_min[pos]) ,
 59         lazy_min[pos] = inf;
 60     }
 61 }
 62 inline void update_add(int pos,int ll,int rr,const lli &x) {
 63     if( rr < l[pos] || r[pos] < ll ) return;
 64     if( ll <= l[pos] && r[pos] <= rr ) return apply_add(pos,x);
 65     push(pos);
 66     update_add(lson[pos],ll,rr,x) , update_add(rson[pos],ll,rr,x) ,
 67     ns[pos] = ns[lson[pos]] + ns[rson[pos]] ;
 68 }
 69 inline void update_min(int pos,int ll,int rr,const lli &x) {
 70     if( rr < l[pos] || r[pos] < ll ) return;
 71     if( ll <= l[pos] && r[pos] <= rr ) return apply_min(pos,x);
 72     push(pos);
 73     update_min(lson[pos],ll,rr,x) , update_min(rson[pos],ll,rr,x) ,
 74     ns[pos] = ns[lson[pos]] + ns[rson[pos]];
 75 }
 76 inline Node query(int pos,int ll,int rr) {
 77     if( ll <= l[pos] && r[pos] <= rr ) return ns[pos];
 78     push(pos);
 79     const int mid = ( l[pos] + r[pos] ) >> 1;
 80     if( rr <= mid ) return query(lson[pos],ll,rr);
 81     if( ll > mid ) return query(rson[pos],ll,rr);
 82     const Node ql = query(lson[pos],ll,rr) , qr = query(rson[pos],ll,rr);
 83     return ql + qr;
 84 }
 85 
 86 int main() {
 87     static int n,m;
 88     scanf("%d%d",&n,&m) , memset(lazy_min,0x3f,sizeof(lazy_min));
 89     for(int i=1;i<=n;i++) scanf("%d",in+i);
 90     build(cnt=1,1,n);
 91     for(int i=1,o,l,r,x;i<=m;i++) {
 92         scanf("%d%d%d",&o,&l,&r);
 93         if( o == 3 ) {
 94             Node ans = query(1,l,r);
 95             printf("%d\n",ans.umiv<lim?r-l+1:1);
 96         } else {
 97             scanf("%d",&x);
 98             if( o == 1 ) update_add(1,l,r,x);
 99             else if( o ==2 ) update_min(1,l,r,x);
100         }
101     }
102     return 0;
103 }
View Code
相關文章
相關標籤/搜索