★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公衆號:山青詠芝(shanqingyongzhi)
➤博客園地址:山青詠芝(www.zengqiang.org)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址:http://www.javashuo.com/article/p-xjrnkesp-hm.html
➤若是連接不是山青詠芝的博客園地址,則多是爬取做者的文章。
➤原文已修改更新!強烈建議點擊原文地址閱讀!支持做者!支持原創!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★html
Consider a matrix M
with dimensions width * height
, such that every cell has value 0
or 1
, and any square sub-matrix of M
of size sideLength * sideLength
has at most maxOnes
ones.git
Return the maximum possible number of ones that the matrix M
can have.github
Example 1:算法
Input: width = 3, height = 3, sideLength = 2, maxOnes = 1 Output: 4 Explanation: In a 3*3 matrix, no 2*2 sub-matrix can have more than 1 one. The best solution that has 4 ones is: [1,0,1] [0,0,0] [1,0,1]
Example 2:微信
Input: width = 3, height = 3, sideLength = 2, maxOnes = 2 Output: 6 Explanation: [1,0,1] [1,0,1] [1,0,1]
Constraints:app
1 <= width, height <= 100
1 <= sideLength <= width, height
0 <= maxOnes <= sideLength * sideLength
如今有一個尺寸爲 width * height
的矩陣 M
,矩陣中的每一個單元格的值不是 0
就是 1
。ide
並且矩陣 M
中每一個大小爲 sideLength * sideLength
的 正方形 子陣中,1
的數量不得超過 maxOnes
。spa
請你設計一個算法,計算矩陣中最多能夠有多少個 1
。設計
示例 1:code
輸入:width = 3, height = 3, sideLength = 2, maxOnes = 1 輸出:4 解釋: 題目要求:在一個 3*3 的矩陣中,每個 2*2 的子陣中的 1 的數目不超過 1 個。 最好的解決方案中,矩陣 M 裏最多能夠有 4 個 1,以下所示: [1,0,1] [0,0,0] [1,0,1]
示例 2:
輸入:width = 3, height = 3, sideLength = 2, maxOnes = 2 輸出:6 解釋: [1,0,1] [1,0,1] [1,0,1]
提示:
1 <= width, height <= 100
1 <= sideLength <= width, height
0 <= maxOnes <= sideLength * sideLength
1 class Solution { 2 func maximumNumberOfOnes(_ width: Int, _ height: Int, _ sideLength: Int, _ maxOnes: Int) -> Int { 3 var res:[Int] = [Int]() 4 for i in 0..<sideLength 5 { 6 for j in 0..<sideLength 7 { 8 res.append(((width-i-1)/sideLength+1)*((height-j-1)/sideLength+1)) 9 } 10 } 11 res = res.sorted(by:>) 12 var ans:Int = 0 13 for i in 0..<maxOnes 14 { 15 ans += res[i] 16 } 17 return ans 18 } 19 }