一維插值php
插值不一樣於擬合。插值函數通過樣本點,擬合函數通常基於最小二乘法儘可能靠近全部樣本點穿過。常見插值方法有拉格朗日插值法、分段插值法、樣條插值法。python
拉格朗日插值多項式:當節點數n較大時,拉格朗日插值多項式的次數較高,可能出現不一致的收斂狀況,並且計算複雜。隨着樣點增長,高次插值會帶來偏差的震動現象稱爲龍格現象。ide
分段插值:雖然收斂,但光滑性較差。函數
樣條插值:樣條插值是使用一種名爲樣條的特殊分段多項式進行插值的形式。因爲樣條插值可使用低階多項式樣條實現較小的插值偏差,這樣就避免了使用高階多項式所出現的龍格現象,因此樣條插值獲得了流行。spa
# -*-coding:utf-8 -*- import numpy as np from scipy import interpolate import pylab as pl x = np.linspace(0, 10, 11) # x=[ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.] y = np.sin(x) xnew = np.linspace(0, 10, 101) pl.plot(x, y, "ro") for kind in ["nearest", "zero", "slinear", "quadratic", "cubic"]: # 插值方式 # "nearest","zero"爲階梯插值 # slinear 線性插值 # "quadratic","cubic" 爲2階、3階B樣條曲線插值 f = interpolate.interp1d(x, y, kind=kind) # ‘slinear’, ‘quadratic’ and ‘cubic’ refer to a spline interpolation of first, second or third order) ynew = f(xnew) pl.plot(xnew, ynew, label=str(kind)) pl.legend(loc="lower right") pl.show()
結果:3d
二維插值rest
方法與一維數據插值相似,爲二維樣條插值。code
# -*- coding: utf-8 -*- """ 演示二維插值。 """ import numpy as np from scipy import interpolate import pylab as pl import matplotlib as mpl def func(x, y): return (x + y) * np.exp(-5.0 * (x ** 2 + y ** 2)) # X-Y軸分爲15*15的網格 y, x = np.mgrid[-1:1:15j, -1:1:15j] fvals = func(x, y) # 計算每一個網格點上的函數值 15*15的值 print len(fvals[0]) # 三次樣條二維插值 newfunc = interpolate.interp2d(x, y, fvals, kind='cubic') # 計算100*100的網格上的插值 xnew = np.linspace(-1, 1, 100) # x ynew = np.linspace(-1, 1, 100) # y fnew = newfunc(xnew, ynew) # 僅僅是y值 100*100的值 # 繪圖 # 爲了更明顯地比較插值先後的區別,使用關鍵字參數interpolation='nearest' # 關閉imshow()內置的插值運算。 pl.subplot(121) im1 = pl.imshow(fvals, extent=[-1, 1, -1, 1], cmap=mpl.cm.hot, interpolation='nearest', origin="lower") # pl.cm.jet # extent=[-1,1,-1,1]爲x,y範圍 favals爲 pl.colorbar(im1) pl.subplot(122) im2 = pl.imshow(fnew, extent=[-1, 1, -1, 1], cmap=mpl.cm.hot, interpolation='nearest', origin="lower") pl.colorbar(im2) pl.show()
左圖爲原始數據,右圖爲二維插值結果圖。ip
二維插值的三維展現方法utf-8
# -*- coding: utf-8 -*- """ 演示二維插值。 """ # -*- coding: utf-8 -*- import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib as mpl from scipy import interpolate import matplotlib.cm as cm import matplotlib.pyplot as plt def func(x, y): return (x + y) * np.exp(-5.0 * (x ** 2 + y ** 2)) # X-Y軸分爲20*20的網格 x = np.linspace(-1, 1, 20) y = np.linspace(-1, 1, 20) x, y = np.meshgrid(x, y) # 20*20的網格數據 fvals = func(x, y) # 計算每一個網格點上的函數值 15*15的值 fig = plt.figure(figsize=(9, 6)) # Draw sub-graph1 ax = plt.subplot(1, 2, 1, projection='3d') surf = ax.plot_surface(x, y, fvals, rstride=2, cstride=2, cmap=cm.coolwarm, linewidth=0.5, antialiased=True) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('f(x, y)') plt.colorbar(surf, shrink=0.5, aspect=5) # 標註 # 二維插值 newfunc = interpolate.interp2d(x, y, fvals, kind='cubic') # newfunc爲一個函數 # 計算100*100的網格上的插值 xnew = np.linspace(-1, 1, 100) # x ynew = np.linspace(-1, 1, 100) # y fnew = newfunc(xnew, ynew) # 僅僅是y值 100*100的值 np.shape(fnew) is 100*100 xnew, ynew = np.meshgrid(xnew, ynew) ax2 = plt.subplot(1, 2, 2, projection='3d') surf2 = ax2.plot_surface(xnew, ynew, fnew, rstride=2, cstride=2, cmap=cm.coolwarm, linewidth=0.5, antialiased=True) ax2.set_xlabel('xnew') ax2.set_ylabel('ynew') ax2.set_zlabel('fnew(x, y)') plt.colorbar(surf2, shrink=0.5, aspect=5) # 標註 plt.show()
左圖的二維數據集的函數值因爲樣本較少,會顯得粗糙。而右圖對二維樣本數據進行三次樣條插值,擬合獲得更多數據點的樣本值,繪圖後圖像明顯光滑多了。
參考連接:
1.拉格朗日插值法:https://zh.wikipedia.org/wiki/拉格朗日插值法
2.樣條插值:https://zh.wikipedia.org/wiki/樣條插值