圖論——連通份量

圖論——連通份量

連通份量介紹

在這裏插入圖片描述

對於上圖很顯然連通份量爲1,對於下圖連通份量個數爲2java

在這裏插入圖片描述

DFS計算連通份量

經過上一小節dfs遍歷的過程咱們知道依次dfs就是一個連通份量,由於dfs只有走到無路可走纔會回退,因此咱們只須要記錄一下dfs次數便可,有以下代碼數組

public class UndirectedGraphDFSCC {
    private UndirectedGraph graph;
    private boolean[] visited;
    private int ccCount;//連通份量

    public UndirectedGraphDFSCC(UndirectedGraph graph){
        this.graph = graph;
        visited = new boolean[graph.vertexNum()];
        //可能有多個連通份量,因此得for
        for(int v=0;v<graph.vertexNum();v++){
            if(!visited[v]){
                dfs(v);
                ccCount++;
            }
        }
    }

    public int getCcCount(){
        return ccCount;
    }

    private void dfs(int v){
        visited[v] = true;
        for(int w:graph.adj(v)) {
            if(!visited[w]){
                dfs(w);
            }
        }
    }


    public static void main(String[] args) {
        UndirectedGraph graph = new UndirectedGraph("graph.txt");
        System.out.println(graph);
        UndirectedGraphDFSCC graphDFS = new UndirectedGraphDFSCC(graph);
        System.out.println(graphDFS.getCcCount());
    }
}

可是咱們想知道的不單單是一個圖有多少連通份量,而是每一個連通份量都有哪些頂點
咱們能夠改變一下visited數組,改成int數組,若是數組裏的值是-1,表明此下標表明的頂點未訪問過,若是數組裏的值是0,表明此下標表明的頂點是屬於第一個連通份量的,若是數組裏的值是1,表明此下標表明的頂點是屬於第二個連通份量的,以此類推,有以下代碼app

public class UndirectedGraphCC {
    private UndirectedGraph graph;
    private int[] visited;
    private int ccCount;//連通份量

    public UndirectedGraphCC(UndirectedGraph graph){
        this.graph = graph;
        visited = new int[graph.vertexNum()];
        for(int i=0;i<visited.length;i++){
            //visited裏面-1表示沒有訪問,0表示第一個聯通份量,1表示第二個連通份量,以此類推
            visited[i] = -1;
        }
        for(int v=0;v<graph.vertexNum();v++){
            if(visited[v]==-1){
                dfs(v,ccCount);
                ccCount++;
            }
        }
    }

    private void dfs(int v,int ccId){
        visited[v] = ccId;
        for(int w:graph.adj(v)) {
            if(visited[w]==-1){
                dfs(w,ccId);
            }
        }
    }

    /** * 返回全部的連通份量 * @return */
    public List<Integer>[] components(){
        List<Integer>[] res = new ArrayList[ccCount];
        for(int i=0;i<ccCount;i++){
            res[i] = new ArrayList<>();
        }

        for(int v=0;v<graph.vertexNum();v++){
            res[visited[v]].add(v);
        }
        return res;
    }

    public boolean isConnected(int v,int w){
        graph.validateVertex(v);
        graph.validateVertex(w);
        return visited[v]==visited[w];
    }

    public int getCcCount(){return ccCount;}
    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        for(int v:visited){
            sb.append(v+" ");
        }
        sb.append("\n連通份量:"+ccCount);
        int index = 1;
        for (List<Integer> list:components()){
            sb.append("\n第"+index+++"個連通份量的頂點:");
            for (int v:list) {
                sb.append(v+" ");
            }
        }
        return sb.toString();
    }

    public static void main(String[] args) {
        UndirectedGraph graph = new UndirectedGraph("graph.txt");
        System.out.println(graph);
        UndirectedGraphCC graphCC = new UndirectedGraphCC(graph);
        System.out.println(graphCC);
        System.out.println(graphCC.isConnected(0, 6));
        System.out.println(graphCC.isConnected(0, 5));
    }
}

BFS計算連通份量

public class UndirectedGraphCCBFS {
    private UndirectedGraph graph;
    private int[] visited;
    private int ccCount;

    public UndirectedGraphCCBFS(UndirectedGraph graph){
        this.graph = graph;
        visited = new int[graph.vertexNum()];
        for(int i=0;i<visited.length;i++){
            //visited裏面-1表示沒有訪問,0表示第一個聯通份量,1表示第二個連通份量,以此類推
            visited[i] = -1;
        }
        //多個聯通份量必須for
        for(int v=0;v<graph.vertexNum();v++){
            if(visited[v]==-1){
                bfs(v,ccCount);
                ccCount++;
            }
        }
    }

    private void bfs(int v,int ccId){
        Queue<Integer> queue = new LinkedList();
        queue.offer(v);
        visited[v] = ccId;

        while(!queue.isEmpty()){
            int w = queue.poll();
            for(int u:graph.adj(w)){
                if(visited[u]==-1){
                    visited[u] = ccId;
                    queue.offer(u);
                }
            }
        }
    }

    /** * 返回全部的連通份量 * @return */
    public List<Integer>[] components(){
        List<Integer>[] res = new ArrayList[ccCount];
        for(int i=0;i<ccCount;i++){
            res[i] = new ArrayList<>();
        }

        for(int v=0;v<graph.vertexNum();v++){
            res[visited[v]].add(v);
        }
        return res;
    }

    public boolean isConnected(int v,int w){
        graph.validateVertex(v);
        graph.validateVertex(w);
        return visited[v]==visited[w];
    }

    public int getCcCount() {
        return ccCount;
    }

    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        for(int v:visited){
            sb.append(v+" ");
        }
        sb.append("\n連通份量:"+ccCount);
        int index = 1;
        for (List<Integer> list:components()){
            sb.append("\n第"+index+++"個連通份量的頂點:");
            for (int v:list) {
                sb.append(v+" ");
            }
        }
        return sb.toString();
    }

    public static void main(String[] args) {
        UndirectedGraph graph = new UndirectedGraph("graph.txt");
        System.out.println(graph);
        UndirectedGraphCCBFS graphBFS = new UndirectedGraphCCBFS(graph);
        System.out.println(graphBFS);
    }
}

圖文件graph.txt

7 6
0 1
0 2
1 3
2 6
2 3
1 4

建圖類

public class UndirectedGraph {
    private int V;//頂點數
    private int E;//邊數
    private TreeSet<Integer>[] adj;//鄰接表,TreeSet數組存儲

    public UndirectedGraph(String filename){
        File file = new File(filename);
        try(Scanner scanner = new Scanner(file)){
            V = scanner.nextInt();//頂點數
            if(V<=0) throw new RuntimeException("頂點個數必須大於0");
            adj = new TreeSet[V];
            for(int i=0;i<V;i++){
                adj[i] = new TreeSet<>();
            }
            E = scanner.nextInt();//邊數
            if(E<0) throw new RuntimeException("邊數不能爲負數");
            for(int i=0;i<E;i++){
                int a = scanner.nextInt();
                validateVertex(a);
                int b = scanner.nextInt();
                validateVertex(b);
                //自環邊檢測
                if(a==b){
                    throw new RuntimeException("簡單圖不能包含自環邊");
                }
                //平行邊檢測
                if(adj[a].contains(b)){
                    throw new RuntimeException("簡單圖不能包含平行邊");
                }
                adj[a].add(b);
                adj[b].add(a);
            }
        }catch (IOException e){
            e.printStackTrace();
        }
    }

    public void validateVertex(int v){
        if(v<0||v>=V){
            throw new RuntimeException("頂點下標溢出");
        }
    }
    public int vertexNum(){
        return V;
    }
    public int edgeNum(){
        return E;
    }
    public boolean hasEdge(int v,int w){
        validateVertex(v);
        validateVertex(w);
        return adj[v].contains(w);
    }

    //鄰接頂點
    public Iterable<Integer> adj(int v){
        validateVertex(v);
        return adj[v];
    }

    //度
    public int degree(int v){
        validateVertex(v);
        return adj[v].size();
    }

    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        sb.append(String.format("V = %d,E = %d\n",V,E));
        for(int i=0;i<adj.length;i++){
            sb.append(i+":");
            for (Iterator<Integer> it = adj[i].iterator(); it.hasNext(); ) {
                sb.append(it.next()+" ");
            }
            sb.append("\n");
        }
        return sb.toString();
    }


    public static void main(String[] args) {
        UndirectedGraph graph = new UndirectedGraph("graph.txt");
        System.out.println(graph);
    }
相關文章
相關標籤/搜索