1、核心數據結構
串口驅動有3個核心數據結構,它們都定義在<#include linux/serial_core.h>
一、uart_driver
uart_driver包含了串口設備名、串口驅動名、主次設備號、串口控制檯(可選)等信息,還封裝了tty_driver(底層串口驅動無需關心tty_driver)。
struct uart_driver {
struct module *owner; /* 擁有該uart_driver的模塊,通常爲THIS_MODULE */
const char *driver_name; /* 串口驅動名,串口設備文件名以驅動名爲基礎 */
const char *dev_name; /* 串口設備名 */
int major; /* 主設備號 */
int minor; /* 次設備號 */
int nr; /* 該uart_driver支持的串口個數(最大) */
struct console *cons; /* 其對應的console.若該uart_driver支持serial console,不然爲NULL */
/*
* these are private; the low level driver should not
* touch these; they should be initialised to NULL
*/
struct uart_state *state;
struct tty_driver *tty_driver;
};
二、uart_port
uart_port用於描述串口端口的I/O端口或I/O內存地址、FIFO大小、端口類型、串口時鐘等信息。實際上,一個uart_port實例對應一個串口設備
struct uart_port {
spinlock_t lock; /* 串口端口鎖 */
unsigned int iobase; /* IO端口基地址 */
unsigned char __iomem *membase; /* IO內存基地址,經映射(如ioremap)後的IO內存虛擬基地址 */
unsigned int irq; /* 中斷號 */
unsigned int uartclk; /* 串口時鐘 */
unsigned int fifosize; /* 串口FIFO緩衝大小 */
unsigned char x_char; /* xon/xoff字符 */
unsigned char regshift; /* 寄存器位移 */
unsigned char iotype; /* IO訪問方式 */
unsigned char unused1;
#define UPIO_PORT (0) /* IO端口 */
#define UPIO_HUB6 (1)
#define UPIO_MEM (2) /* IO內存 */
#define UPIO_MEM32 (3)
#define UPIO_AU (4) /* Au1x00 type IO */
#define UPIO_TSI (5) /* Tsi108/109 type IO */
#define UPIO_DWAPB (6) /* DesignWare APB UART */
#define UPIO_RM9000 (7) /* RM9000 type IO */
unsigned int read_status_mask; /* 關心的Rx error status */
unsigned int ignore_status_mask;/* 忽略的Rx error status */
struct uart_info *info; /* pointer to parent info */
struct uart_icount icount; /* 計數器 */
struct console *cons; /* console結構體 */
#ifdef CONFIG_SERIAL_CORE_CONSOLE
unsigned long sysrq; /* sysrq timeout */
#endif
upf_t flags;
#define UPF_FOURPORT ((__force upf_t) (1 << 1))
#define UPF_SAK ((__force upf_t) (1 << 2))
#define UPF_SPD_MASK ((__force upf_t) (0x1030))
#define UPF_SPD_HI ((__force upf_t) (0x0010))
#define UPF_SPD_VHI ((__force upf_t) (0x0020))
#define UPF_SPD_CUST ((__force upf_t) (0x0030))
#define UPF_SPD_SHI ((__force upf_t) (0x1000))
#define UPF_SPD_WARP ((__force upf_t) (0x1010))
#define UPF_SKIP_TEST ((__force upf_t) (1 << 6))
#define UPF_AUTO_IRQ ((__force upf_t) (1 << 7))
#define UPF_HARDPPS_CD ((__force upf_t) (1 << 11))
#define UPF_LOW_LATENCY ((__force upf_t) (1 << 13))
#define UPF_BUGGY_UART ((__force upf_t) (1 << 14))
#define UPF_MAGIC_MULTIPLIER ((__force upf_t) (1 << 16))
#define UPF_CONS_FLOW ((__force upf_t) (1 << 23))
#define UPF_SHARE_IRQ ((__force upf_t) (1 << 24))
#define UPF_BOOT_AUTOCONF ((__force upf_t) (1 << 28))
#define UPF_FIXED_PORT ((__force upf_t) (1 << 29))
#define UPF_DEAD ((__force upf_t) (1 << 30))
#define UPF_IOREMAP ((__force upf_t) (1 << 31))
#define UPF_CHANGE_MASK ((__force upf_t) (0x17fff))
#define UPF_USR_MASK ((__force upf_t) (UPF_SPD_MASK|UPF_LOW_LATENCY))
unsigned int mctrl; /* 當前的moden設置 */
unsigned int timeout; /* character-based timeout */
unsigned int type; /* 端口類型 */
const struct uart_ops *ops; /* 串口端口操做函數集 */
unsigned int custom_divisor;
unsigned int line; /* 端口索引 */
resource_size_t mapbase; /* IO內存物理基地址,可用於ioremap */
struct device *dev; /* 父設備 */
unsigned char hub6; /* this should be in the 8250 driver */
unsigned char suspended;
unsigned char unused[2];
void *private_data; /* 端口私有數據,通常爲platform數據指針 */
};
uart_iconut爲串口信息計數器,包含了發送字符計數、接收字符計數等。在串口的發送中斷處理函數和接收中斷處理函數中,咱們須要管理這些計數。
struct uart_icount {
__u32 cts;
__u32 dsr;
__u32 rng;
__u32 dcd;
__u32 rx; /* 發送字符計數 */
__u32 tx; /* 接受字符計數 */
__u32 frame; /* 幀錯誤計數 */
__u32 overrun; /* Rx FIFO溢出計數 */
__u32 parity; /* 幀校驗錯誤計數 */
__u32 brk; /* break計數 */
__u32 buf_overrun;
};
uart_info有兩個成員在底層串口驅動會用到:xmit和tty。用戶空間程序經過串口發送數據時,上層驅動將用戶數據保存在xmit;而串口發送中斷處理函數就是經過xmit獲取到用戶數據並將它們發送出去。串口接收中斷處理函數須要經過tty將接收到的數據傳遞給行規則層。
/* uart_info實例僅在串口端口打開時有效,它可能在串口關閉時被串口核心層釋放。所以,在使用uart_port的uart_info成員時必須保證串口已打開。底層驅動和核心層驅動均可以修改uart_info實例。
* This is the state information which is only valid when the port
* is open; it may be freed by the core driver once the device has
* been closed. Either the low level driver or the core can modify
* stuff here.
*/
struct uart_info {
struct tty_struct *tty;
struct circ_buf xmit;
uif_t flags;
/*
* Definitions for info->flags. These are _private_ to serial_core, and
* are specific to this structure. They may be queried by low level drivers.
*/
#define UIF_CHECK_CD ((__force uif_t) (1 << 25))
#define UIF_CTS_FLOW ((__force uif_t) (1 << 26))
#define UIF_NORMAL_ACTIVE ((__force uif_t) (1 << 29))
#define UIF_INITIALIZED ((__force uif_t) (1 << 31))
#define UIF_SUSPENDED ((__force uif_t) (1 << 30))
int blocked_open;
struct tasklet_struct tlet;
wait_queue_head_t open_wait;
wait_queue_head_t delta_msr_wait;
};
三、uart_ops
uart_ops涵蓋了串口驅動可對串口設備進行的全部操做。
/*
* This structure describes all the operations that can be
* done on the physical hardware.
*/
struct uart_ops {
unsigned int (*tx_empty)(struct uart_port *); /* 串口的Tx FIFO緩存是否爲空 */
void (*set_mctrl)(struct uart_port *, unsigned int mctrl); /* 設置串口modem控制 */
unsigned int (*get_mctrl)(struct uart_port *); /* 獲取串口modem控制 */
void (*stop_tx)(struct uart_port *); /* 禁止串口發送數據 */
void (*start_tx)(struct uart_port *); /* 使能串口發送數據 */
void (*send_xchar)(struct uart_port *, char ch);/* 發送xChar */
void (*stop_rx)(struct uart_port *); /* 禁止串口接收數據 */
void (*enable_ms)(struct uart_port *); /* 使能modem的狀態信號 */
void (*break_ctl)(struct uart_port *, int ctl); /* 設置break信號 */
int (*startup)(struct uart_port *); /* 啓動串口,應用程序打開串口設備文件時,該函數會被調用 */
void (*shutdown)(struct uart_port *); /* 關閉串口,應用程序關閉串口設備文件時,該函數會被調用 */
void (*set_termios)(struct uart_port *, struct ktermios *new, struct ktermios *old); /* 設置串口參數 */
void (*pm)(struct uart_port *, unsigned int state,
unsigned int oldstate); /* 串口電源管理 */
int (*set_wake)(struct uart_port *, unsigned int state); /* */
const char *(*type)(struct uart_port *); /* 返回一描述串口類型的字符串 */
void (*release_port)(struct uart_port *); /* 釋放串口已申請的IO端口/IO內存資源,必要時還需iounmap */
int (*request_port)(struct uart_port *); /* 申請必要的IO端口/IO內存資源,必要時還能夠從新映射串口端口 */
void (*config_port)(struct uart_port *, int); /* 執行串口所需的自動配置 */
int (*verify_port)(struct uart_port *, struct serial_struct *); /* 覈實新串口的信息 */
int (*ioctl)(struct uart_port *, unsigned int, unsigned long); /* IO控制 */
};
2、串口驅動API
一、uart_register_driver
/* 功能: uart_register_driver用於將串口驅動uart_driver註冊到內核(串口核心層)中,一般在模塊初始化函數調用該函數。
* 參數 drv:要註冊的uart_driver
* 返回值: 成功,返回0;不然返回錯誤碼
*/
int uart_register_driver(struct uart_driver *drv)
二、uart_unregister_driver
/* 功能: uart_unregister_driver用於註銷咱們已註冊的uart_driver,一般在模塊卸載函數調用該函數
* 參數 drv:要註銷的uart_driver
* 返回值: 成功,返回0;不然返回錯誤碼
*/
void uart_unregister_driver(struct uart_driver *drv)
三、uart_add_one_port
/* 功能: uart_add_one_port用於爲串口驅動添加一個串口端口,一般在探測到設備後(驅動的設備probe方法)調用該函數
* 參數 drv:串口驅動
* port:要添加的串口端口
* 返回值: 成功,返回0;不然返回錯誤碼
*/
int uart_add_one_port(struct uart_driver *drv, struct uart_port *port)
四、uart_remove_one_port
/* 功能: uart_remove_one_port用於刪除一個已添加到串口驅動中的串口端口,一般在驅動卸載時調用該函數
* 參數 drv: 串口驅動
* port: 要刪除的串口端口
* 返回值: 成功,返回0;不然返回錯誤碼
*/
int uart_remove_one_port(struct uart_driver *drv, struct uart_port *port)
五、uart_write_wakeup
/* 功能: uart_write_wakeup喚醒上層因向串口端口寫數據而阻塞的進程,一般在串口發送中斷處理函數中調用該函數
* 參數 port:須要喚醒寫阻塞進程的串口端口
*/
void uart_write_wakeup(struct uart_port *port)
六、uart_suspend_port
/* 功能: uart_suspend_port用於掛起特定的串口端口
* 參數 drv: 要掛起的串口端口所屬的串口驅動
* port:要掛起的串口端口
* 返回值: 成功返回0;不然返回錯誤碼
*/
int uart_suspend_port(struct uart_driver *drv, struct uart_port *port)
七、uart_resume_port
/* 功能: uart_resume_port用於恢復某一已掛起的串口
* 參數 drv: 要恢復的串口端口所屬的串口驅動
* port:要恢復的串口端口
* 返回值: 成功返回0;不然返回錯誤碼
*/
int uart_resume_port(struct uart_driver *drv, struct uart_port *port)
八、uart_get_baud_rate
/* 功能: uart_get_baud_rate經過解碼termios結構體來獲取指定串口的波特率
* 參數 port: 要獲取波特率的串口端口
* termios:當前指望的termios配置(包含串口波特率)
* old: 之前的termios配置,能夠爲NULL
* min: 可接受的最小波特率
* max: 可接受的最大波特率
* 返回值: 串口的波特率
*/
unsigned int
uart_get_baud_rate(struct uart_port *port, struct ktermios *termios,
struct ktermios *old, unsigned int min, unsigned int max)
九、uart_get_divisor
/* 功能: uart_get_divisor用於計算某一波特率的串口時鐘分頻數(串口波特率除數)
* 參數 port:要計算時鐘分頻數的串口端口
* baud:指望的波特率
*返回值: 串口時鐘分頻數
*/
unsigned int uart_get_divisor(struct uart_port *port, unsigned int baud)
十、uart_update_timeout
/* 功能: uart_update_timeout用於更新(設置)串口FIFO超時時間
* 參數 port: 要更新超時時間的串口端口
* cflag:termios結構體的cflag值
* baud: 串口的波特率
*/
void uart_update_timeout(struct uart_port *port, unsigned int cflag, unsigned int baud)
十一、uart_match_port
/* 功能:uart_match_port用於判斷兩串口端口是否爲同一端口
* 參數 port一、port2:要判斷的串口端口
* 返回值:不一樣返回0;不然返回非0
*/
int uart_match_port(struct uart_port *port1, struct uart_port *port2)
十二、uart_console_write
/* 功能: uart_console_write用於向串口端口寫一控制檯信息
* 參數 port: 要寫信息的串口端口
* s: 要寫的信息
* count: 信息的大小
* putchar: 用於向串口端口寫字符的函數,該函數函數有兩個參數:串口端口和要寫的字符
*/
void uart_console_write(struct uart_port *port, const char *s,
unsigned int count,
void (*putchar)(struct uart_port *, int))
3、串口驅動例子
該串口驅動例子是我針對s3c2410處理器的串口2(uart2)獨立開發的。由於我經過博創2410s開發板的GRPS擴展板來測試該驅動(已經過測試),因此我叫該串口爲gprs_uart。
該驅動將串口看做平臺(platform)設備。platform能夠看做一僞總線,用於將集成於片上系統的輕量級設備與Linux設備驅動模型聯繫到一塊兒,它包含如下兩部分(有關platform的聲明都在#include ,具體實如今drivers/base/platform.c):
一、platform設備。咱們須要爲每一個設備定義一個platform_device實例
struct platform_device {
const char *name; /* 設備名 */
int id; /* 設備的id號 */
struct device dev; /* 其對應的device */
u32 num_resources;/* 該設備用有的資源數 */
struct resource *resource; /* 資源數組 */
};
爲咱們的設備建立platform_device實例有兩種方法:填充一個platform_device結構體後用platform_device_register(一次註冊一個)或platform_add_devices(一次能夠註冊多個platform設備)將platform_device註冊到內核;更簡單的是使用platform_device_register_simple來創建並註冊咱們的platform_device。
二、platform驅動。platform設備由platform驅動進行管理。當設備加入到系統中時,platform_driver的probe方法會被調用來見對應的設備添加或者註冊到內核;當設備從系統中移除時,platform_driver的remove方法會被調用來作一些清理工做,如移除該設備的一些實例、註銷一些已註冊到系統中去的東西。
struct platform_driver {
int (*probe)(struct platform_device *);
int (*remove)(struct platform_device *);
void (*shutdown)(struct platform_device *);
int (*suspend)(struct platform_device *, pm_message_t state);
int (*suspend_late)(struct platform_device *, pm_message_t state);
int (*resume_early)(struct platform_device *);
int (*resume)(struct platform_device *);
struct device_driver driver;
};
更詳細platform資料可參考網上相關文章。
例子驅動中申請和釋放IO內存區的整個過程以下:
insmod gprs_uart.ko→gprs_init_module()→uart_register_driver()→gprs_uart_probe()→ uart_add_one_port()→gprs_uart_config_port()→gprs_uart_request_port()→request_mem_region()
rmmod gprs_uart.ko→gprs_exit_module()→uart_unregister_driver()→gprs_uart_remove()→uart_remove_one_port()→gprs_uart_release_port()→release_mem_region()
例子驅動中申請和釋放IRQ資源的整個過程以下:
open /dev/gprs_uart→gprs_uart_startup()→request_irq()
close /dev/gprs_uart→gprs_uart_shutdown()→free_irq()
想了解更詳細的調用過程能夠在驅動模塊各函數頭插入printk(KERN_DEBUG "%s\n", __FUNCTION__);並在函數尾插入printk(KERN_DEBUG "%s done\n", __FUNCTION__);
下面是串口驅動例子和其GPRS測試程序源碼下載地址:
http://www.pudn.com/downloads258/sourcecode/unix_linux/detail1192104.html
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h> /* printk() */
#include <linux/slab.h> /* kmalloc() */
#include <linux/fs.h> /* everything... */
#include <linux/errno.h> /* error codes */
#include <linux/types.h> /* size_t */
#include <linux/fcntl.h> /* O_ACCMODE */
#include <asm/system.h> /* cli(), *_flags */
#include <asm/uaccess.h> /* copy_*_user */
#include <linux/ioctl.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/sysrq.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial_core.h>
#include <linux/serial.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/console.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/hardware.h>
#include <asm/plat-s3c/regs-serial.h>
#include <asm/arch/regs-gpio.h>
#define DEV_NAME "gprs_uart" /* 設備名 */
/* 這裏將串口的主設備號設爲0,則串口設備編號由內核動態分配;你也可指定串口的設備編號 */
#define GPRS_UART_MAJOR 0 /* 主設備號 */
#define GPRS_UART_MINOR 0 /* 次設備號 */
#define GPRS_UART_FIFO_SIZE 16 /* 串口FIFO的大小 */
#define RXSTAT_DUMMY_READ (0x10000000)
#define MAP_SIZE (0x100) /* 要映射的串口IO內存區大小 */
/* 串口發送中斷號 */
#define TX_IRQ(port) ((port)->irq + 1)
/* 串口接收中斷號 */
#define RX_IRQ(port) ((port)->irq)
/* 容許串口接收字符的標誌 */
#define tx_enabled(port) ((port)->unused[0])
/* 容許串口發送字符的標誌 */
#define rx_enabled(port) ((port)->unused[1])
/* 獲取寄存器地址 */
#define portaddr(port, reg) ((port)->membase + (reg))
/* 讀8位寬的寄存器 */
#define rd_regb(port, reg) (ioread8(portaddr(port, reg)))
/* 讀32位寬的寄存器 */
#define rd_regl(port, reg) (ioread32(portaddr(port, reg)))
/* 寫8位寬的寄存器 */
#define wr_regb(port, reg, val) \
do { iowrite8(val, portaddr(port, reg)); } while(0)
/* 寫32位寬的寄存器 */
#define wr_regl(port, reg, val) \
do { iowrite32(val, portaddr(port, reg)); } while(0)
/* 禁止串口發送數據 */
static void gprs_uart_stop_tx(struct uart_port *port)
{
if (tx_enabled(port)) /* 若串口已啓動發送 */
{
disable_irq(TX_IRQ(port)); /* 禁止發送中斷 */
tx_enabled(port) = 0; /* 設置串口爲未啓動發送 */
}
}
/* 使能串口發送數據 */
static void gprs_uart_start_tx(struct uart_port *port)
{
if (!tx_enabled(port)) /* 若串口未啓動發送 */
{
enable_irq(TX_IRQ(port)); /* 使能發送中斷 */
tx_enabled(port) = 1; /* 設置串口爲已啓動發送 */
}
}
/* 禁止串口接收數據 */
static void gprs_uart_stop_rx(struct uart_port *port)
{
if (rx_enabled(port)) /* 若串口已啓動接收 */
{
disable_irq(RX_IRQ(port)); /* 禁止接收中斷 */
rx_enabled(port) = 0; /* 設置串口爲未啓動接收 */
}
}
/* 使能modem的狀態信號 */
static void gprs_uart_enable_ms(struct uart_port *port)
{
}
/* 串口的Tx FIFO緩存是否爲空 */
static unsigned int gprs_uart_tx_empty(struct uart_port *port)
{
int ret = 1;
unsigned long ufstat = rd_regl(port, S3C2410_UFSTAT);
unsigned long ufcon = rd_regl(port, S3C2410_UFCON);
if (ufcon & S3C2410_UFCON_FIFOMODE) /* 若使能了FIFO */
{
if ((ufstat & S3C2410_UFSTAT_TXMASK) != 0 || /* 0
(ufstat & S3C2410_UFSTAT_TXFULL)) /* FIFO滿 */
ret = 0;
}
else /* 若未使能了FIFO,則判斷髮送緩存和發送移位寄存器是否均爲空 */
{
ret = rd_regl(port, S3C2410_UTRSTAT) & S3C2410_UTRSTAT_TXE;
}
return ret;
}
/* 獲取串口modem控制,由於uart2無modem控制,因此CTS、DSR直接返回有效 */
static unsigned int gprs_uart_get_mctrl(struct uart_port *port)
{
return (TIOCM_CTS | TIOCM_DSR | TIOCM_CAR);
}
/* 設置串口modem控制 */
static void gprs_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
}
/* 設置break信號 */
static void gprs_uart_break_ctl(struct uart_port *port, int break_state)
{
unsigned long flags;
unsigned int ucon;
spin_lock_irqsave(&port->lock, flags);
ucon = rd_regl(port, S3C2410_UCON);
if (break_state)
ucon |= S3C2410_UCON_SBREAK;
else
ucon &= ~S3C2410_UCON_SBREAK;
wr_regl(port, S3C2410_UCON, ucon);
spin_unlock_irqrestore(&port->lock, flags);
}
/* 返回Rx FIFO已存多少數據 */
static int gprs_uart_rx_fifocnt(unsigned long ufstat)
{
/* 若Rx FIFO已滿,返回FIFO的大小 */
if (ufstat & S3C2410_UFSTAT_RXFULL)
return GPRS_UART_FIFO_SIZE;
/* 若FIFO未滿,返回Rx FIFO已存了多少字節數據 */
return (ufstat & S3C2410_UFSTAT_RXMASK) >> S3C2410_UFSTAT_RXSHIFT;
}
#define S3C2410_UERSTAT_PARITY (0x1000)
/* 串口接收中斷處理函數,獲取串口接收到的數據,並將這些數據遞交給行規則層 */
static irqreturn_t gprs_uart_rx_chars(int irq, void *dev_id)
{
struct uart_port *port = dev_id;
struct tty_struct *tty = port->info->tty;
unsigned int ufcon, ch, flag, ufstat, uerstat;
int max_count = 64;
/* 循環接收數據,最多一次中斷接收64字節數據 */
while (max_count-- > 0)
{
ufcon = rd_regl(port, S3C2410_UFCON);
ufstat = rd_regl(port, S3C2410_UFSTAT);
/* 若Rx FIFO無數據了,跳出循環 */
if (gprs_uart_rx_fifocnt(ufstat) == 0)
break;
/* 讀取Rx error狀態寄存器 */
uerstat = rd_regl(port, S3C2410_UERSTAT);
/* 讀取已接受到的數據 */
ch = rd_regb(port, S3C2410_URXH);
/* insert the character into the buffer */
/* 先將tty標誌設爲正常 */
flag = TTY_NORMAL;
/* 遞增接收字符計數器 */
port->icount.rx++;
/* 判斷是否存在Rx error
* if (unlikely(uerstat & S3C2410_UERSTAT_ANY))等同於
* if (uerstat & S3C2410_UERSTAT_ANY)
* 只是unlikely表示uerstat & S3C2410_UERSTAT_ANY的值爲假的可能性大一些
* 另外還有一個likely(value)表示value的值爲真的可能性更大一些
*/
if (unlikely(uerstat & S3C2410_UERSTAT_ANY))
{
/* 若break錯誤,遞增icount.brk計算器 */
if (uerstat & S3C2410_UERSTAT_BREAK)
{
port->icount.brk++;
if (uart_handle_break(port))
goto ignore_char;
}
/* 若frame錯誤,遞增icount.frame計算器 */
if (uerstat & S3C2410_UERSTAT_FRAME)
port->icount.frame++;
/* 若overrun錯誤,遞增icount.overrun計算器 */
if (uerstat & S3C2410_UERSTAT_OVERRUN)
port->icount.overrun++;
/* 查看咱們是否關心該Rx error
* port->read_status_mask保存着咱們感興趣的Rx error status
*/
uerstat &= port->read_status_mask;
/* 若咱們關心該Rx error,則將flag設置爲對應的error flag */
if (uerstat & S3C2410_UERSTAT_BREAK)
flag = TTY_BREAK;
else if (uerstat & S3C2410_UERSTAT_PARITY)
flag = TTY_PARITY;
else if (uerstat & ( S3C2410_UERSTAT_FRAME | S3C2410_UERSTAT_OVERRUN))
flag = TTY_FRAME;
}
/* 處理sys字符 */
if (uart_handle_sysrq_char(port, ch))
goto ignore_char;
/* 將接收到的字符插入到tty設備的flip緩衝 */
uart_insert_char(port, uerstat, S3C2410_UERSTAT_OVERRUN, ch, flag);
ignore_char:
continue;
}
/* 刷新tty設備的flip緩衝,將接受到的數據傳給行規則層 */
tty_flip_buffer_push(tty);
return IRQ_HANDLED;
}
/* 串口發送中斷處理函數,將用戶空間的數據(保存在環形緩衝xmit裏)發送出去 */
static irqreturn_t gprs_uart_tx_chars(int irq, void *dev_id)
{
struct uart_port *port = dev_id;
struct circ_buf *xmit = &port->info->xmit; /* 獲取環線緩衝 */
int count = 256;
/* 若設置了xChar字符 */
if (port->x_char)
{
/* 將該xChar發送出去 */
wr_regb(port, S3C2410_UTXH, port->x_char);
/* 遞增發送計數 */
port->icount.tx++;
/* 清除xChar */
port->x_char = 0;
/* 退出中斷處理 */
goto out;
}
/* 若是沒有更多的字符須要發送(環形緩衝爲空),
* 或者uart Tx已中止,
* 則中止uart並退出中斷處理函數
*/
if (uart_circ_empty(xmit) || uart_tx_stopped(port))
{
gprs_uart_stop_tx(port);
goto out;
}
/* 循環發送數據,直到環形緩衝爲空,最多一次中斷髮送256字節數據 */
while (!uart_circ_empty(xmit) && count-- > 0)
{
/* 若Tx FIFO已滿,退出循環 */
if (rd_regl(port, S3C2410_UFSTAT) & S3C2410_UFSTAT_TXFULL)
break;
/* 將要發送的數據寫入Tx FIFO */
wr_regb(port, S3C2410_UTXH, xmit->buf[xmit->tail]);
/* 移向循環緩衝中下一要發送的數據 */
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
port->icount.tx++;
}
/* 若是環形緩衝區中剩餘的字符少於WAKEUP_CHARS,喚醒上層 */
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
/* 若是環形緩衝爲空,則中止發送 */
if (uart_circ_empty(xmit))
gprs_uart_stop_tx(port);
out:
return IRQ_HANDLED;
}
/* 啓動串口端口,在打開該驅動的設備文件時會調用該函數來申請串口中斷,並設置串口爲可接受,也可發送 */
static int gprs_uart_startup(struct uart_port *port)
{
unsigned long flags;
int ret;
const char *portname = to_platform_device(port->dev)->name;
/* 設置串口爲不可接受,也不可發送 */
rx_enabled(port) = 0;
tx_enabled(port) = 0;
spin_lock_irqsave(&port->lock, flags);
/* 申請接收中斷 */
ret = request_irq(RX_IRQ(port), gprs_uart_rx_chars, 0, portname, port);
if (ret != 0)
{
printk(KERN_ERR "cannot get irq %d\n", RX_IRQ(port));
return ret;
}
/* 設置串口爲容許接收 */
rx_enabled(port) = 1;
/* 申請發送中斷 */
ret = request_irq(TX_IRQ(port), gprs_uart_tx_chars, 0, portname, port);
if (ret)
{
printk(KERN_ERR "cannot get irq %d\n", TX_IRQ(port));
rx_enabled(port) = 0;
free_irq(RX_IRQ(port), port);
goto err;
}
/* 設置串口爲容許發送 */
tx_enabled(port) = 1;
err:
spin_unlock_irqrestore(&port->lock, flags);
return ret;
}
/* 關閉串口,在關閉驅動的設備文件時會調用該函數,釋放串口中斷 */
static void gprs_uart_shutdown(struct uart_port *port)
{
rx_enabled(port) = 0; /* 設置串口爲不容許接收 */
free_irq(RX_IRQ(port), port); /* 釋放接收中斷 */
tx_enabled(port) = 0; /* 設置串口爲不容許發送 */
free_irq(TX_IRQ(port), port); /* 釋放發送中斷 */
}
/* 設置串口參數 */
static void gprs_uart_set_termios(struct uart_port *port,
struct ktermios *termios,
struct ktermios *old)
{
unsigned long flags;
unsigned int baud, quot;
unsigned int ulcon, ufcon = 0;
/* 不支持moden控制信號線
* HUPCL: 關閉時掛斷moden
* CMSPAR: mark or space (stick) parity
* CLOCAL: 忽略任何moden控制線
*/
termios->c_cflag &= ~(HUPCL | CMSPAR);
termios->c_cflag |= CLOCAL;
/* 獲取用戶設置的串口波特率,並計算分頻數(串口波特率除數quot) */
baud = uart_get_baud_rate(port, termios, old, 0, 115200*8);
if (baud == 38400 && (port->flags & UPF_SPD_MASK) == UPF_SPD_CUST)
quot = port->custom_divisor;
else
quot = port->uartclk / baud / 16 - 1;
/* 設置數據字長 */
switch (termios->c_cflag & CSIZE)
{
case CS5:
ulcon = S3C2410_LCON_CS5;
break;
case CS6:
ulcon = S3C2410_LCON_CS6;
break;
case CS7:
ulcon = S3C2410_LCON_CS7;
break;
case CS8:
default:
ulcon = S3C2410_LCON_CS8;
break;
}
/* 是否要求設置兩個中止位(CSTOPB) */
if (termios->c_cflag & CSTOPB)
ulcon |= S3C2410_LCON_STOPB;
/* 是否使用奇偶檢驗 */
if (termios->c_cflag & PARENB)
{
if (termios->c_cflag & PARODD) /* 奇校驗 */
ulcon |= S3C2410_LCON_PODD;
else /* 偶校驗 */
ulcon |= S3C2410_LCON_PEVEN;
}
else /* 無校驗 */
{
ulcon |= S3C2410_LCON_PNONE;
}
if (port->fifosize > 1)
ufcon |= S3C2410_UFCON_FIFOMODE | S3C2410_UFCON_RXTRIG8;
spin_lock_irqsave(&port->lock, flags);
/* 設置FIFO控制寄存器、線控制寄存器和波特率除數寄存器 */
wr_regl(port, S3C2410_UFCON, ufcon);
wr_regl(port, S3C2410_ULCON, ulcon);
wr_regl(port, S3C2410_UBRDIV, quot);
/* 更新串口FIFO的超時時限 */
uart_update_timeout(port, termios->c_cflag, baud);
/* 設置咱們感興趣的Rx error */
port->read_status_mask = S3C2410_UERSTAT_OVERRUN;
if (termios->c_iflag & INPCK)
port->read_status_mask |= S3C2410_UERSTAT_FRAME | S3C2410_UERSTAT_PARITY;
/* 設置咱們忽略的Rx error */
port->ignore_status_mask = 0;
if (termios->c_iflag & IGNPAR)
port->ignore_status_mask |= S3C2410_UERSTAT_OVERRUN;
if (termios->c_iflag & IGNBRK && termios->c_iflag & IGNPAR)
port->ignore_status_mask |= S3C2410_UERSTAT_FRAME;
/* 若未設置CREAD(使用接收器),則忽略全部Rx error*/
if ((termios->c_cflag & CREAD) == 0)
port->ignore_status_mask |= RXSTAT_DUMMY_READ;
spin_unlock_irqrestore(&port->lock, flags);
}
/* 獲取串口類型 */
static const char *gprs_uart_type(struct uart_port *port)
{/* 返回描述串口類型的字符串指針 */
return port->type == PORT_S3C2410 ? "gprs_uart:s3c2410_uart2" : NULL;
}
/* 申請串口一些必要的資源,如IO端口/IO內存資源,必要時還能夠從新映射串口端口 */
static int gprs_uart_request_port(struct uart_port *port)
{
struct resource *res;
const char *name = to_platform_device(port->dev)->name;
/* request_mem_region請求分配IO內存,從開始port->mapbase,大小MAP_SIZE
* port->mapbase保存當前串口的寄存器基地址(物理)
* uart2: 0x50008000
*/
res = request_mem_region(port->mapbase, MAP_SIZE, name);
if (res == NULL)
{
printk(KERN_ERR"request_mem_region error: %p\n", res);
return -EBUSY;
}
return 0;
}
/* 釋放串口已申請的IO端口/IO內存資源,必要時還需iounmap */
static void gprs_uart_release_port(struct uart_port *port)
{
/* 釋放已分配IO內存 */
release_mem_region(port->mapbase, MAP_SIZE);
}
/* 執行串口所需的自動配置 */
static void gprs_uart_config_port(struct uart_port *port, int flags)
{
int retval;
/* 請求串口 */
retval = gprs_uart_request_port(port);
/* 設置串口類型 */
if (flags & UART_CONFIG_TYPE && retval == 0)
port->type = PORT_S3C2410;
}
/* The UART operations structure */
static struct uart_ops gprs_uart_ops = {
.start_tx = gprs_uart_start_tx, /* Start transmitting */
.stop_tx = gprs_uart_stop_tx, /* Stop transmission */
.stop_rx = gprs_uart_stop_rx, /* Stop reception */
.enable_ms = gprs_uart_enable_ms, /* Enable modem status signals */
.tx_empty = gprs_uart_tx_empty, /* Transmitter busy? */
.get_mctrl = gprs_uart_get_mctrl, /* Get modem control */
.set_mctrl = gprs_uart_set_mctrl, /* Set modem control */
.break_ctl = gprs_uart_break_ctl, /* Set break signal */
.startup = gprs_uart_startup, /* App opens GPRS_UART */
.shutdown = gprs_uart_shutdown, /* App closes GPRS_UART */
.set_termios = gprs_uart_set_termios, /* Set termios */
.type = gprs_uart_type, /* Get UART type */
.request_port = gprs_uart_request_port, /* Claim resources associated with a GPRS_UART port */
.release_port = gprs_uart_release_port, /* Release resources associated with a GPRS_UART port */
.config_port = gprs_uart_config_port, /* Configure when driver adds a GPRS_UART port */
};
/* Uart driver for GPRS_UART */
static struct uart_driver gprs_uart_driver = {
.owner = THIS_MODULE, /* Owner */
.driver_name = DEV_NAME, /* Driver name */
.dev_name = DEV_NAME, /* Device node name */
.major = GPRS_UART_MAJOR, /* Major number */
.minor = GPRS_UART_MINOR, /* Minor number start */
.nr = 1, /* Number of UART ports */
};
/* Uart port for GPRS_UART port */
static struct uart_port gprs_uart_port = {
.irq = IRQ_S3CUART_RX2, /* IRQ */
.fifosize = GPRS_UART_FIFO_SIZE, /* Size of the FIFO */
.iotype = UPIO_MEM, /* IO memory */
.flags = UPF_BOOT_AUTOCONF, /* UART port flag */
.ops = &gprs_uart_ops, /* UART operations */
.line = 0, /* UART port number */
.lock = __SPIN_LOCK_UNLOCKED(gprs_uart_port.lock),
};
/* 初始化指定串口端口 */
static int gprs_uart_init_port(struct uart_port *port, struct platform_device *platdev)
{
unsigned long flags;
unsigned int gphcon;
if (platdev == NULL)
return -ENODEV;
port->dev = &platdev->dev;
/* 設置串口波特率時鐘頻率 */
port->uartclk = clk_get_rate(clk_get(&platdev->dev, "pclk"));
/* 設置串口的寄存器基地址(物理): 0x50008000 */
port->mapbase = S3C2410_PA_UART2;
/* 設置當前串口的寄存器基地址(虛擬): 0xF5008000 */
port->membase = S3C24XX_VA_UART + (S3C2410_PA_UART2 - S3C24XX_PA_UART);
spin_lock_irqsave(&port->lock, flags);
wr_regl(port, S3C2410_UCON, S3C2410_UCON_DEFAULT);
wr_regl(port, S3C2410_ULCON, S3C2410_LCON_CS8 | S3C2410_LCON_PNONE);
wr_regl(port, S3C2410_UFCON, S3C2410_UFCON_FIFOMODE
| S3C2410_UFCON_RXTRIG8 | S3C2410_UFCON_RESETBOTH);
/* 將I/O port H的gph6和gph7設置爲TXD2和RXD2 */
gphcon = readl(S3C2410_GPHCON);
gphcon &= ~((0x5) << 12);
writel(gphcon, S3C2410_GPHCON);
spin_unlock_irqrestore(&port->lock, flags);
return 0;
}
/* Platform driver probe */
static int __init gprs_uart_probe(struct platform_device *dev)
{
int ret;
/* 初始化串口 */
ret = gprs_uart_init_port(&gprs_uart_port, dev);
if (ret < 0)
{
printk(KERN_ERR"gprs_uart_probe: gprs_uart_init_port error: %d\n", ret);
return ret;
}
/* 添加串口 */
ret = uart_add_one_port(&gprs_uart_driver, &gprs_uart_port);
if (ret < 0)
{
printk(KERN_ERR"gprs_uart_probe: uart_add_one_port error: %d\n", ret);
return ret;
}
/* 將串口uart_port結構體保存在platform_device->dev->driver_data中 */
platform_set_drvdata(dev, &gprs_uart_port);
return 0;
}
/* Called when the platform driver is unregistered */
static int gprs_uart_remove(struct platform_device *dev)
{
platform_set_drvdata(dev, NULL);
/* 移除串口 */
uart_remove_one_port(&gprs_uart_driver, &gprs_uart_port);
return 0;
}
/* Suspend power management event */
static int gprs_uart_suspend(struct platform_device *dev, pm_message_t state)
{
uart_suspend_port(&gprs_uart_driver, &gprs_uart_port);
return 0;
}
/* Resume after a previous suspend */
static int gprs_uart_resume(struct platform_device *dev)
{
uart_resume_port(&gprs_uart_driver, &gprs_uart_port);
return 0;
}
/* Platform driver for GPRS_UART */
static struct platform_driver gprs_plat_driver = {
.probe = gprs_uart_probe, /* Probe method */
.remove = __exit_p(gprs_uart_remove), /* Detach method */
.suspend = gprs_uart_suspend, /* Power suspend */
.resume = gprs_uart_resume, /* Resume after a suspend */
.driver = {
.owner = THIS_MODULE,
.name = DEV_NAME, /* Driver name */
},
};
/* Platform device for GPRS_UART */
struct platform_device *gprs_plat_device;
static int __init gprs_init_module(void)
{
int retval;
/* Register uart_driver for GPRS_UART */
retval = uart_register_driver(&gprs_uart_driver);
if (0 != retval)
{
printk(KERN_ERR "gprs_init_module: can't register the GPRS_UART driver %d\n", retval);
return retval;
}
/* Register platform device for GPRS_UART. Usually called
during architecture-specific setup */
gprs_plat_device = platform_device_register_simple(DEV_NAME, 0, NULL, 0);
if (IS_ERR(gprs_plat_device))
{
retval = PTR_ERR(gprs_plat_device);
printk(KERN_ERR "gprs_init_module: can't register platform device %d\n", retval);
goto fail_reg_plat_dev;
}
/* Announce a matching driver for the platform
devices registered above */
retval = platform_driver_register(&gprs_plat_driver);
if (0 != retval)
{
printk(KERN_ERR "gprs_init_module: can't register platform driver %d\n", retval);
goto fail_reg_plat_drv;
}
return 0; /* succeed */
fail_reg_plat_drv:
platform_device_unregister(gprs_plat_device);
fail_reg_plat_dev:
uart_unregister_driver(&gprs_uart_driver);
return retval;
}
static void __exit gprs_exit_module(void)
{
/* The order of unregistration is important. Unregistering the
UART driver before the platform driver will crash the system */
/* Unregister the platform driver */
platform_driver_unregister(&gprs_plat_driver);
/* Unregister the platform devices */
platform_device_unregister(gprs_plat_device);
/* Unregister the GPRS_UART driver */
uart_unregister_driver(&gprs_uart_driver);
}
module_init(gprs_init_module);
module_exit(gprs_exit_module);
MODULE_AUTHOR("lingd");
MODULE_LICENSE("Dual BSD/GPL");html