洛谷P2805 植物大戰殭屍

題意:給你一張圖,每一個節點保護若干節點。ide

當一個節點不被保護的時候,你就能夠gay掉它。spa

gay每一個節點都有收益(可能爲負),求最大總收益。code

解:首先發現是一個最大權閉合子圖。blog

把保護關係變成被保護,那麼gay每一個節點就必須gay每一個保護它的節點。string

而後發現有個小問題:有環。it

因而咱們tarjan求強連通份量而後刪點。最後最大權閉合子圖。io

這裏我刪點刪的十分暴力......(反正點很少)event

注意:刪點的時候,若是它權值爲正,要在sum裏面減去它的權值。class

  1 #include <cstdio>
  2 #include <algorithm>
  3 #include <queue>
  4 #include <cstring>
  5 #include <stack>
  6 
  7 const int N = 1010, M = 1000010, INF = 0x3f3f3f3f;
  8 
  9 struct Edge {
 10     int nex, v, c;
 11 }edge[M << 1], _edge[M]; int top = 1, _top;
 12 
 13 int e[N], d[N], _e[N];
 14 std::queue<int> Q;
 15 std::stack<int> S;
 16 int dfn[N], low[N], num, fr[N], scc_cnt, scc_siz[N], vis[N], val[N], sum;
 17 
 18 void tarjan(int x) {
 19     dfn[x] = low[x] = ++num;
 20     S.push(x);
 21     for(int i = _e[x]; i; i = _edge[i].nex) {
 22         int y = _edge[i].v;
 23         if(!dfn[y]) {
 24             tarjan(y);
 25             low[x] = std::min(low[x], low[y]);
 26         }
 27         else if(!fr[y]) {
 28             low[x] = std::min(low[x], dfn[y]);
 29         }
 30     }
 31     if(low[x] == dfn[x]) {
 32         scc_cnt++;
 33         int y;
 34         do {
 35             y = S.top();
 36             S.pop();
 37             fr[y] = scc_cnt;
 38             scc_siz[scc_cnt]++;
 39         } while(y != x);
 40     }
 41     return;
 42 }
 43 
 44 inline void add(int x, int y, int z) {
 45     top++;
 46     edge[top].v = y;
 47     edge[top].c = z;
 48     edge[top].nex = e[x];
 49     e[x] = top;
 50 
 51     top++;
 52     edge[top].v = x;
 53     edge[top].c = 0;
 54     edge[top].nex = e[y];
 55     e[y] = top;
 56     return;
 57 }
 58 
 59 inline void _add(int x, int y) {
 60     _top++;
 61     _edge[_top].v = y;
 62     _edge[_top].nex = _e[x];
 63     _e[x] = _top;
 64     return;
 65 }
 66 
 67 void del(int x) {
 68     vis[x] = 1;
 69     if(val[x] > 0) {
 70         sum -= val[x];
 71     }
 72     for(int i = e[x]; i; i = edge[i].nex) {
 73         edge[i].c = edge[i ^ 1].c = 0;
 74     }
 75     for(int i = _e[x]; i; i = _edge[i].nex) {
 76         int y = _edge[i].v;
 77         if(!vis[y]) {
 78             del(y);
 79         }
 80     }
 81     e[x] = _e[x] = 0;
 82     return;
 83 }
 84 
 85 inline bool BFS(int s, int t) {
 86     memset(d, 0, sizeof(d));
 87     d[s] = 1;
 88     Q.push(s);
 89     while(!Q.empty()) {
 90         int x = Q.front();
 91         Q.pop();
 92         for(int i = e[x]; i; i = edge[i].nex) {
 93             int y = edge[i].v;
 94             if(!edge[i].c || d[y]) {
 95                 continue;
 96             }
 97             d[y] = d[x] + 1;
 98             Q.push(y);
 99         }
100     }
101     return d[t];
102 }
103 
104 int DFS(int x, int t, int maxF) {
105     if(x == t) {
106         return maxF;
107     }
108     int ans = 0;
109     for(int i = e[x]; i; i = edge[i].nex) {
110         int y = edge[i].v;
111         if(!edge[i].c || d[x] + 1 != d[y]) {
112             continue;
113         }
114         int temp = DFS(y, t, std::min(edge[i].c, maxF - ans));
115         if(!temp) {
116             d[y] = INF;
117         }
118         ans += temp;
119         edge[i].c -= temp;
120         edge[i ^ 1].c += temp;
121         if(ans == maxF) {
122             break;
123         }
124     }
125     return ans;
126 }
127 
128 inline int solve(int s, int t) {
129     int ans = 0;
130     while(BFS(s, t)) {
131         ans += DFS(s, t, INF);
132     }
133     return ans;
134 }
135 
136 int m;
137 inline int id(int x, int y) {
138     return (x - 1) * m + y;
139 }
140 
141 int main() {
142 
143     int n;
144     scanf("%d%d", &n, &m);
145     int s = n * m + 1, t = n * m + 2;
146     for(int i = 1; i <= n; i++) {
147         for(int j = 1; j <= m; j++) {
148             int x, y, z;
149             scanf("%d", &x);
150             val[id(i, j)] = x;
151             if(x > 0) {
152                 add(s, id(i, j), x);
153                 sum += x;
154             }
155             else if(x < 0) {
156                 add(id(i, j), t, -x);
157             }
158             scanf("%d", &z);
159             for(int k = 1; k <= z; k++) {
160                 scanf("%d%d", &x, &y);
161                 x++;
162                 y++;
163                 add(id(x, y), id(i, j), INF);
164                 _add(id(i, j), id(x, y));
165             }
166             if(j < m) {
167                 add(id(i, j), id(i, j + 1), INF);
168                 _add(id(i, j + 1), id(i, j));
169             }
170         }
171     }
172     for(int i = 1; i <= n * m; i++) {
173         if(!dfn[i]) {
174             tarjan(i);
175         }
176     }
177     for(int i = 1; i <= n * m; i++) {
178         if(scc_siz[fr[i]] > 1 && !vis[i]) {
179             del(i);
180         }
181     }
182     printf("%d", sum - solve(s, t));
183     return 0;
184 }
AC代碼
相關文章
相關標籤/搜索
本站公眾號
   歡迎關注本站公眾號,獲取更多信息