2018年的AI/ML驚喜及預測19年的走勢(二)

摘要: 2019技術發展趨勢早知道,你值得擁有!

年度回顧:2018年的AI/ML驚喜及預測19年的走勢(一)php

Unravel Data首席執行官Kunal Agarwal算法

人工智能和機器學習的日益重視將會推進TensorFlow和H2O實現技術突破成爲可能。此外,Spark和Kafka將繼續呈現引人注目的受歡迎程度。數據庫

隨着雲業務模式快速成熟,企業併購交易將繼續加速。巨頭將對人工智能領先的創業公司進行大規模收購,以便在AI和ML中提供高度需求的知識產權和人才。谷歌和阿里巴巴在收購萌芽的人工智能技術方面處於領先地位,而其餘一些科技巨頭將嘗試經過自主研發來模仿他們的成功。api

Grammarly研究總監Joel瀏覽器

最近幾年,人工智能推進了理解和生成語言的界限(最值得注意的是新聞翻譯)。因爲如下因素,我預計2019年更多天然語言處理(NLP)里程碑成果將會減小:網絡

  1. 語言解釋依賴於語境,意味着真正理解一我的的寫做或語言須要參與者的知識,還有他們先前的交流。大多數NLP模型工做是在沒有這些因素的狀況下進行的語言解釋或生成,但我但願經過結合更多受衆認知的知識,使得NLP性能提升並變得更加個性化。
  2. 關於AI的一個小祕密:許多系統都是在數千人(或更多)人類評估者建立和標記的數據集上進行訓練的。隨着咱們須要解決更復雜的人工智能問題,對大量高質量人工標註數據的需求將會增長,但在利用機器學習技術來收集這些數據時會有更多時間和成本效益的突破。
  3. 同時,使用最少甚至沒有標記數據(也稱爲無監督技術)的方法將減小咱們對大量標記數據的依賴,使深度學習模型可以在新的和不一樣類型的問題上更加健壯。
  4. 模型架構和基礎架構的進步使豐富的深度學習模型可以在資源較低的環境中工做,例如在移動電話和Web瀏覽器中。在將來,咱們但願看到更復雜的模型,即便沒有互聯網鏈接,也能在全部設置中爲用戶提供反饋。

Univa總裁兼首席執行官GaryTyreman架構

混合雲和專用雲將推進機器學習(ML)項目的大規模增加。根據最近對超過344名技術和IT專業人士的調查顯示:在2020年,愈來愈多的項目將投入生產,ML將在將來兩年內實現爆炸式增加。超過80%的受訪者表示,他們計劃將混合雲用於ML項目,這樣能夠下降成本。Univa客戶已經在尋求指導,將他們的HPC和機器學習工做負載遷移到雲或混合環境,由於他們但願將他們的ML項目推動生產。app

AI/ML將進入企業應用程序。咱們一直在談論人工智能是過去兩年中最熱門的趨勢之一。咱們開始看到AI和機器學習穩步進入企業應用程序,用於客戶支持,欺詐分析和商業智能等任務。咱們徹底有理由相信這些創新將繼續在雲中發生,2019年將是企業中人工智能的重要一年。機器學習

HPC和GPU將在推動機器學習項目中發揮關鍵做用。GPU在HPC中將發揮很高的價值,其中許多任務,如模擬,財務建模和3D渲染也能在並行環境中運行良好。根據HPC市場的市場研究公司Intersect 360研究代表:50種最受歡迎​​的HPC應用程序包中有34種提供GPU支持,包括全部前15種HPC應用程序。所以,GPU在HPC中變得相當重要。科學家,企業研究人員,大學和研究機構都知道,加速應用程序對商業和研究來講都是有益的。工具

Sutherland首席分析官Puti Nagarjuna

打破障礙; 人工智能與人類恐懼之間的平衡:不管咱們是否意識到,咱們對人工智能的依賴比以往任什麼時候候都更加活躍,2019年公司將齊心合力進一步瞭解人工智能的侷限性,同時發現AI應對更細微的人類行爲的方法。

愈來愈多人接受人工智能做爲客戶體驗的第一線:消費者將更多地接受人工智能聊天機器人做爲客戶體驗的第一線,更多公司將採用它們來創造超個性化和便捷的體驗。

AI將把以客戶爲中心的營銷推向新的高度:隨着各類規模的公司轉向人工智能技術,經過人工智能加強趨勢分析將達到史無前例的價值水平,幫助企業評估如何優化營銷工做,做爲數據驅動的一部分CMO將崛起。

機器學習追求最大價值:數據呈指數級增加,但訪問該數據的能力對於良好的ML算法並不實用。在將來一年,一個主要的挑戰將是不斷髮展的算法,以產生適用於你的數據的最大值具體須要。

匯流數據架構師Gwen Shapira:

隨着愈來愈多的公司試圖將AI從實驗室轉移到生產中,咱們將看到愈來愈多的工具用於管理開發生命週期。AI具備獨特的雙階段開發模型,目前的CI/CD工具鏈沒法解決訓練,可重複性和數據管理方面的獨特挑戰。

許多公司意識到他們能夠經過更簡單的工具得到許多AI / ML優點,例如規則引擎和簡單的推薦系統。我但願看到愈來愈多的人採用這些,既能夠做爲進入徹底自治世界的墊腳石,也能夠做爲許多行業的良好解決方案。

咱們將看到許多數據工程工具被從新命名爲AI/ML數據管道工具。它們與一般的數據工程工具大體相同,但預算較多。我指望一個真正的以人爲本的數據管道來處理訓練和生產之間的數據和模型流,特別是處理反饋循環和模型改進。

Kinetica的首席技術官兼聯合創始人:Nima Negahban

數據工程師的崛起使AI成爲企業的最前沿。去年是數據科學家的一年,企業重點關注招聘數據科學家建立高級分析和ML模型。2019年將是數據工程師的一年。數據工程師將專一於將數據科學家的工做轉化爲業務的強化數據驅動軟件解決方案。這涉及建立深刻的AI開發,測試,DevOps和審計流程,使公司可以在整個企業範圍內大規模整合AI和數據管道。

人與ML造成共生關係,以推進實時業務決策。2019年人工智能和分析的世界須要融合,以推進更有意義的業務決策。這將須要一種通用方法,將歷史批量分析、流分析、位置智能、圖形分析和人工智能結合在一個平臺中進行復雜分析。最終結果是一種新的模型,用於結合臨時分析和機器學習,比以往更快的速度提供更好的洞察力。

Oqton首席技術官兼聯合創始人:Ben Schrauwen

2018年最大的驚喜是在解決大型訓練數據集需求方面取得的進展。AlphaZero擊敗了全部之前的版本,達到了超人的水平。生成對抗網絡(GAN)正在成功應用於產生更強大的模型。此外,咱們如今看到AI能夠在很是具體的任務中變得如此擅長,人類沒法再說出差別,例如Google Duplex在語音合成中有效地越過了神奇的山谷,爲特定的狹窄領域產生了天然的聲音對話。

我預計咱們會很快看到AlphaZero的方法適用於大型搜索空間的難題,甚至超越人類的專業知識。視覺和3D深度學習的進步將致使愈來愈多的解決方案,以幫助提升人類在特定任務中的生產力,甚至徹底自動化。

MemSQL首席執行官:NikitaShamgunov

預測#1:現代工做負載需求將命令從NoSQL轉移到NewSQL數據庫。因爲ML,AI和邊緣計算工做負載不斷激增數據,傳統的NoSQL數據庫再也不足以知足市場對更高性能和可擴展性的需求,而不會給現有數據庫增長新的複雜性。關係數據庫已發展成更具可擴展性和快速運行的NewSQL數據庫,經過將事務和分析處理功能集成到單個數據庫中,這些數據庫可以知足這些須要更高數據處理能力的現代工做負載的需求。

預測#2:人工智能和機器學習計劃將要求CEO更好地瞭解它的基礎架構。人工智能和ML的競爭正變得比以往任什麼時候候都更加激烈。爲了使企業可以成功部署AI和ML以實現最大化價值並下降風險,CEO和其餘C級領導者須要瞭解其數據基礎架構的成熟度,包括如何存儲和處理數據,以肯定哪些技術和人才須要推進轉型。

預測#3:AI將使員工可以最大限度地減小勞動密集型任務。人工智能的採用有望推進新的角色和工做機會的引入,以符合公司戰略,從而變得更加以數據爲導向。人工智能將幫助員工專一於更有意義的職責,例如分析洞察力和應用快速數據驅動的決策制定技能,而不是替換人來執行工做,而是幫助執行一般耗時且勞動密集的任務。



本文做者:【方向】

閱讀原文

本文爲雲棲社區原創內容,未經容許不得轉載。

相關文章
相關標籤/搜索