Given an array of non-negative integers arr
, you are initially positioned at start
index of the array. When you are at index i
, you can jump to i + arr[i]
or i - arr[i]
, check if you can reach to any index with value 0.java
Notice that you can not jump outside of the array at any time.數組
Example 1:ide
Input: arr = [4,2,3,0,3,1,2], start = 5 Output: true Explanation: All possible ways to reach at index 3 with value 0 are: index 5 -> index 4 -> index 1 -> index 3 index 5 -> index 6 -> index 4 -> index 1 -> index 3
Example 2:code
Input: arr = [4,2,3,0,3,1,2], start = 0 Output: true Explanation: One possible way to reach at index 3 with value 0 is: index 0 -> index 4 -> index 1 -> index 3
Example 3:遞歸
Input: arr = [3,0,2,1,2], start = 2 Output: false Explanation: There is no way to reach at index 1 with value 0.
Constraints:it
1 <= arr.length <= 5 * 10^4
0 <= arr[i] < arr.length
0 <= start < arr.length
從數組arr的指定位置開始,每次能向左跳或向右跳arr[i]個位置,問可否到達值爲0的位置。io
直接DFS。若是當前位置的值爲0,則直接返回true;不然向兩個位置遞歸處理,注意要先判斷左右兩個下一跳的位置是否合法,且對應下標是否已訪問。class
class Solution { public boolean canReach(int[] arr, int start) { return dfs(arr, start, new boolean[arr.length]); } private boolean dfs(int[] arr, int index, boolean[] visited) { if (arr[index] == 0) { return true; } int left = index - arr[index]; int right = index + arr[index]; boolean dfsLeft = false; boolean dfsRight = false; visited[index] = true; if (0 <= left && left < arr.length && !visited[left]) { dfsLeft = dfs(arr, left, visited); } if (0 <= right && right < arr.length && !visited[right]) { dfsRight = dfs(arr, right, visited); } return dfsLeft || dfsRight; } }