主頁:https://www.h2o.ai/products/h2o4gpu/
html
linux
git
github
Solver Classesshell
Among others, the solver can be used for the following classes of problemswindows
ide
注意事項:安裝升級驅動時,先切換爲x-windows狀態;安裝cuda時,不安裝自帶的驅動,由於以前已經安裝過了。oop
hadoop@unsw-ThinkPad-T490:~/NVIDIA_CUDA-10.1_Samples/bin/x86_64/linux/release$ nvidia-smi Thu Nov 14 10:59:21 2019 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 440.31 Driver Version: 440.31 CUDA Version: 10.2 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 GeForce MX250 Off | 00000000:3C:00.0 Off | N/A | | N/A 58C P0 N/A / N/A | 390MiB / 2002MiB | 0% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | 0 1728 G /usr/lib/xorg/Xorg 190MiB | | 0 1906 G /usr/bin/gnome-shell 136MiB | | 0 2664 G ...uest-channel-token=12816552660085767439 59MiB | +-----------------------------------------------------------------------------+
當迭代更屢次時,h2o的優點開始顯現;至於「預測」,cpu已經很是快。post
import os import time from sklearn.linear_model import MultiTaskLasso, Lasso from sklearn.datasets import load_svmlight_file from sklearn.metrics import r2_score from sklearn.metrics import mean_squared_error import h2o4gpu import h2o4gpu.util.import_data as io import h2o4gpu.util.metrics as metrics import pandas as pd import numpy as np #from joblib import Memory #mem = Memory("./mycache") # This maybe a tricky way to load files. ##@mem.cache def get_data(): data = load_svmlight_file("/home/hadoop/YearPredictionMSD") return data[0], data[1] print("Loading data.") train_x, train_y = load_svmlight_file("/home/hadoop/YearPredictionMSD") train_x = train_x.todense() test_x, test_y = load_svmlight_file("/home/hadoop/YearPredictionMSD.t") test_x = test_x.todense() for max_iter in [100, 500, 1000, 2000, 4000, 8000]: print("="*80) print("Setting up solver, msx_iter is {}".format(max_iter)) model = h2o4gpu.Lasso(alpha=0.01, fit_intercept=False, max_iter=max_iter) #model = Lasso(alpha=0.1, fit_intercept=False, max_iter=500) time_start=time.time() model.fit(train_x, train_y) time_end=time.time() print('train totally cost {} sec'.format(time_end-time_start)) time_start=time.time() y_pred_lasso = model.predict(test_x) y_pred_lasso = np.squeeze(y_pred_lasso) time_end=time.time() print('test totally cost {} sec'.format(time_end-time_start)) print(y_pred_lasso.shape ) print(test_y.shape ) print(y_pred_lasso[:10]) print(test_y[:10]) mse = mean_squared_error(test_y, y_pred_lasso) print("mse on test data : %f" % mse) r2_score_lasso = r2_score(test_y, y_pred_lasso) print("r^2 on test data : %f" % r2_score_lasso)
End.測試